Bradley W. Hindman

Associate Research Professor JILA, Astrophysical and Planetary Sciences, and Applied Mathematics University of Colorado Boulder Boulder CO 80309-0440

Curriculum Vitae

EDUCATION

Ph.D. Astrophysical, Planetary and Atmospheric Sciences (1995) University of Colorado, Boulder CO Advisor: Ellen G. Zweibel Thesis: "The Seismology of Active Regions and the Solar Atmosphere"

B.A. summa cum laude in Physics (1990) University of Puget Sound, Tacoma WA

APPOINTMENTS

8/17-12/26	Associate Research Professor, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder
7/19-present	Senior Research Associate, Department of Applied Mathematics, University of Colorado Boulder
7/01-present	Senior Research Associate, JILA, University of Colorado Boulder
1/08-12/12	Assistant Research Professor, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder
7/04–12/07	Lecturer, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder
12/97-7/01	Research Associate, JILA, University of Colorado Boulder
12/95-12/97	Advanced Studies Program Postdoctoral Fellow, High Altitude Observatory, National Center for Atmospheric Research

RESEARCH EXPERIENCE

2019–present	Senior Research Associate, Department of Applied Mathematics, University of Colorado Boulder Research Topics: Physics of rotating stars and planets
2001-present	Senior Research Associate , JILA, University of Colorado Boulder Research Topics: Physics of stellar convection zones and MHD waves in stellar coronae
1997–2001	Research Associate, JILA, University of Colorado Boulder Research Topic: Helioseismology of the Sun's upper convection zone
1995–1997	Advanced Studies Program Postdoctoral Fellow, High Altitude Observatory, National Center for Atmospheric Research Research Topic: Sunspot and active-region seismology
1/91-12/95	Research Assistant with Professor Ellen Zweibel, Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado Boulder Research Topic: Solar magnetohydrodynamics

7/90-12/90	Graduate Research Assistant with Dr. Robert Winglee, Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado Boulder Research Topic: Magnetotail instabilities
7/90-12/90	Graduate Research Assistant with Professor John McKim Malville, Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado Boulder Research Topic: The solar cycle
6/89–9/89	Undergraduate Research Assistant with Professor Alan Thorndike, Department of Physics, University of Puget Sound Research Topic: River plume mixing in Commencement Bay

TEACHING EXPERIENCE

Primary Instructor:

I I IIIIai y IIIsti	
Department of	Astrophysical and Planetary Sciences, University of Colorado Boulder
2024	ASTR 5400: Introduction to Fluid Dynamics
2020	ASTR 5540: Mathematical Methods
2019	ASTR 5400: Introduction to Fluid Dynamics
2016	ASTR 1200: Stars and Galaxies, introductory astronomy for non-majors
2014	ASTR 5400: Introduction to Fluid Dynamic
2012	ASTR 5410: Fluid Instabilities, Waves, and Turbulence
2011	ASTR 5410: Fluid Instabilities, Waves, and Turbulence
Department of Applied Mathematics, University of Colorado Boulder	
2023	APPM 2360: Introduction to Differential Equations with Linear Algebra
2020	APPM 2360: Introduction to Differential Equations with Linear Algebra
Co-Instructor	:
Department of Astrophysical and Planetary Sciences, University of Colorado Boulder	
2009	ASTR 5410: Fluid Instabilities, Waves, and Turbulence, with Juri Toomre
2018	ASTR 7500: Helio- and Asteroseismology, with Mark Rast
Guest Instruc	tor:
Department of	Astrophysical and Planetary Sciences, University of Colorado Boulder
2016	ASTR 5540: Mathematical Methods, two lectures, course organized by Juri Toomre
2016	ASTR 5400: Intro. to Fluid Dynamics, four lectures, course organized by Juri Toomre
2013	ASTR 7500: Solar and Stellar Magnetism, six lectures, course organized by Juri Toomre
2012	ASTR 5540: Methometical Methods, eight lectures, course organized by Juri Toomra

- 2012 ASTR 5540: Mathematical Methods, eight lectures, course organized by Juri Toomre
- 2009 ASTR 5540: Mathematical Methods, eight lectures, course organized by Juri Toomre

High Altitude Observatory, National Center for Atmospheric Research

2005 Local Helioseismology, Summer School for the Solar Physics Division of the AAS

MENTORING AND SUPERVISION

2023-present	Ph.D. Thesis Advisor , Whitney Powers (Graduate Researcher), Department of Astrophysical and Planetary Sciences, University of Colorado Boulder
2021-present	Supervisor, Lydia Korre (Research Associate), APPM, University of Colorado Boulder
2022-present	Supervisor, Jose Fuentes (Postdoctoral Researcher), APPM, University of Colorado Boulder
2021-present	Ph.D. Thesis Advisor , Catherine Blume (Graduate Researcher), Department of Astrophysical and Planetary Sciences, University of Colorado Boulder
2021–2022	Supervisor, Maria Camisassa (Postdoctoral Researcher), APPM, University of Colorado Boulder
2011–2015	Ph.D. Thesis Advisor , Benjamin Greer, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Ph.D. received Dec 2015
2010-2011	Supervisor, Swati Routh (Postdoctoral Researcher), JILA, University of Colorado Boulder
2005–2011	Ph.D. Thesis Co-Advisor , Nicholas Featherstone, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Ph.D. received Jan 2011
2004	Supervisor , Zachary Ziegler (Undergraduate Student), Undergraduate Research Opportunities Program (UROP), University of Colorado Boulder
2003	Supervisor, Zachary Ziegler (Undergraduate Student), Undergraduate Student, University of Colorado Boulder

GRANT HISTORY

Principal Investigator:

Principal inve	stigator:
2024–2026	"The Seismic Potential of the Sun's Inertial Modes," NASA solicitation 80NSSC24K0271, \$824,943; 1/01/24–12/31/26, Co-Investigator: Nicholas Featherstone
2023–2026	"Exploring Dynamo Processes in the Tachocline and Radiative Interior," NASA grant 80NSSC23K1624, \$150,000, 9/01/23–8/31/26; Future Investigator: Catherine Blume
2021–2023	"Processes Shaping the Solar Meridional Circulation," NASA grant 80NSSC20K0193, \$885,390, 3/9/21–12/31/23; Co-Investigators: Nicholas Featherstone, Benjamin Brown
2020–2022	"The Solar Dynamo Revealed," NASA grant 80NSSC17K0008, \$1,389,068, 11/13/20–6/22/22; Co-Investigators: Nicholas Featherstone, Keith Julien, Geoff Vasil, Mark Miesch
2019–2022	"Exploiting torque balance applied to the torsional oscillations to helioseismically detect and assess submerged magnetic field," NASA grant 80NSSC19K0267, \$524,936, 3/01/19–2/28/22; Co-Investigator: Juri Toomre
2018–2022	"Seismology of the Corona's Magnetic Field," NASA grant 80NSSC18K1125, \$600,000, 7/01/18–6/30/22; Co-Investigator: Rekha Jain
2014–2019	"Theoretical Advancements in the Seismology of Coronal Loops," NASA grant NNX14AG05G, \$450,953, 3/25/14–3/24/19; Co-Investigator: Rekha Jain
2014–2018	"Subsurface Flow Evolution over the Solar Cycle Revealed by Modern Ring-Analysis Techniques," NASA grant NNX14AC05G, \$460,141, 1/1/14–12/31/18; Co-Investigators: Nicholas Featherstone & Juri Toomre
2008–2011	"Helioseismic Tools that Incorporate Corrections Arising from Magnetic Active Regions," NASA grant NNX08AQ28G, \$460,000, 5/19/08–5/18/11; Co-Investigators: Deborah Haber & Juri Toomre
2008–2011	"Helioseismic Probing of Flows Coupled with Evolving and Flaring Active Regions," NASA grant NNX08AJ08G, \$437,902, 2/27/08–2/26/11; Co-Investigators: Deborah Haber & Juri Toomre
2005–2010	"Tools Enabling Rapid Mapping of Solar Subsurface Weather with Time-Distance Tomography," NASA grant NNG05GM83G, \$661,929, 7/15/05–7/14/10; Co-Investigators: Deborah Haber & Juri Toomre
2002–2007	"Helioseismic Probing with GONG+ of Subsurface Flows and their Coupling to Magnetic Activity," NSF grant ATM-0219581, \$498,007, 11/13/02–10/31/07; Co-Investigators: Deborah Haber & Juri Toomre
2002–2007	"Developing Rapid Helioseismic Mapping of Evolving Solar Subsurface Weather and Magnetic Structures for SDO," NASA grant NAG5-12491, \$517,954, 8/15/02–8/14/07; Co-Investigators: Douglas Gough, Deborah Haber, Michael Thompson & Juri Toomre
2001–2005	"Origins of Spatial Variations in Helioseismic Frequency Shifts Associated with Solar Activity," NASA grant NAG5-1F0917, \$263,249, 6/01/01–5/31/05; Co-Investigators: Douglas Gough, Deborah Haber, Michael Thompson & Juri Toomre

Co-Investigator:

Co-Investigate	br:
2024–2026	"Magnetic Influence on Differential Rotation throughout the Solar Interior," NASA grant 80NSSC24K0125, \$1,357,173; Principal Investigator: Nicholas Featherstone
2020–2022	"Solaris – Revealing the Mysteries of the Sun's Poles," NASA solicitation NNH19ZDA013O, Midex mission Phase B, Principal Investigator: Don Hassler
2020–2021	"Processes Shaping the Solar Meridional Circulation," NASA grant 80NSSC20K0193, \$885,390; Principal Investigator: Nicholas Featherstone
2018–2021	"Seeking the Deep Origins of Sunspots," NASA grant 80NSSC18K1127, \$600,000; Principal Investigator: Juri Toomre
2017–2020	"The Solar Dynamo Revealed," NASA grant 80NSSC17K0008, \$1,389,068; Principal Investigator: Nicholas Featherstone
2011–2014	"Dynamic Origins of Cyclic Solar Activity," NASA grant NNX11AJ36G, \$1,352,100; Principal Investigator: Juri Toomre
2009–2013	"Developing Physics-Based Procedures for Helioseismic Probing of Sunspots and Magnetic Active Regions," NASA grant NNX09AB04G, \$2,800,000; Institutional Principal Investigator: Juri Toomre (JILA), Principal Investigator: Douglas Braun (NWRA/ CoRA)
2008–2012	"Solar Dynamo Probed with Simulations of Turbulent Convection, Magnetism and Shear," NASA grant, NNX08AI57G, \$1,217,909; Principal Investigator: Juri Toomre
2007–2012	"Helioseismic Mapping of Subsurface Flows Near Solar Filaments," NASA grant, NNX07AH82G, \$443,039; Principal Investigator: Deborah Haber
2007–2009	"Validation of Local Helioseismic Inversion Methods Using Realistic, Supergranulation- Scale Simulations," NASA grant, \$185,233; Principal Investigator: Robert Stein (MSU)
2006–2007	"Helioseismic Probing of Subsurface Flows with High-Resolution Ring Analyses," NASA grant NNG06GD97G, \$56,000; Principal Investigator: Deborah Haber
2005–2010	"Elements of the Solar Dynamo: MHD Simulations of Convection, Rotation, Shear and Magnetism," NASA grant NNG05G124G, \$1,278,621; Principal Investigator: Juri Toomre
2005–2012	"Local Helioseismic Probing on Subsurface Dynamics with HMI," NASA grant NAS5- 02139, \$481,066; Principal Investigator: Juri Toomre
2003–2009	"Assessing Interactions between Solar Subsurface Weather (SSW) and Magnetism," NASA grant NAG5-13520, \$825,204; Principal Investigator: Juri Toomre
2003–2008	"Framework to Interpret Solar Subsurface Weather: Global Simulations of Turbulent Dynamics of the Upper Reaches of the Solar Convection Zone," NASA grant NAG5- 12815, \$315,000; Principal Investigator: Juri Toomre
2006–2006	"Exploring Dynamical Implications of Solar Subsurface Weather," NASA grant NAG5- 11920, \$56,000; Principal Investigator: Deborah Haber
2002–2006	"Exploring Dynamical Implications of Solar Subsurface Weather," NASA grant NNG06GD97G, \$487,932; Principal Investigator: Deborah Haber
1999–2003	"Global and Local Helioseismic Studies of Solar Convection Zone Dynamics Using SOI- MDI on SOHO," NASA grant NRA NAG5-7996, \$685,000; Principal Investigator: Juri Toomre
1998–2000	"Sources of Original and Scattered <i>p</i> –Mode Energy," NASA grant NRA 97-OSS-08, \$100,022; Principal Investigator: Timothy Brown

Principal Investigator (Supercomputing Resources Awarded Separately from a NASA Grant): 2018-2019 "Seismology of the Corona's Magnetic Field," HEX grant HEC-SMD-17-1579, 100K SBUs (2.8 million core -hours) 2017-2018 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC augmentation award SMD-16-7469, 9.0 million processor hours, 11/1/17-12/31/18 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC grant SMD-2016-2017 16-7469, 9.8 million core-hours, 11/1/16-09/30/17 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC grant SMD-2016 16-6913, 1.6 million core-hours, 04/30/16-10/31/16 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC grant SMD-2015-2016 15-6478, 4.2 million core-hours, 11/01/15-04/30/16 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC grant SMD-2015-2016 15-5894, 3.6 million core-hours, 05/01/15-06/30/16 2014-2015 "Modeling Support for Deep Helioseismic Flow Measurement," NASA HEC grant SMD-14-4892, 4.9 million core-hours, 5/1/14-6/30/15

SERVICE WORK

Service to the University of Colorado Boulder:

Department of Astrophysical and Planetary Sciences

2021-present	Member of the Comprehensive Examination Committee for three graduate students in
	APS (Catherine Blume, Imogen Cresswell, Cole Tamburri)

- 2010–present Member of the Thesis Committee for seven graduate students (Piyush Agrawal, Evan Anders, Kyle Augustson, Conner Bice, Nicholas Featherstone, Loren Matilsky, Ryan Orvedahl)
- 2010–2018 Member of the Research Comprehensive Examination Committee for nine graduate students in APS (Karan Molaverdikhani, Benjamin Greer, Christopher Chronopoulos, Daniel Gole, Marcus Piquette, Ryan Ovredahl, Daniel Everding, Loren Matilsky, & Connor Bice)
- 2010–2019 Collaborated on the writing of ten graduate-level Comprehensive Exams (fluid dynamics and mathematical methods questions)

Department of Physics

2016 Member of the Masters Comprehensive Examination (II) Committee for Andrew Hess

Department of Chemistry

2021 Member of the Oral Examination Committee for Margarita Reza

Laboratory for Atmospheric and Space Physics

2018 Internal Science Review Panel for a proposal to NASA by PI T. Woods

Service to the Profession:

2004–present	Reviewed 37 papers for scientific journals and proceedings: two for Astronomy & Astrophysics, 16 for the Astrophysical Journal, 13 for the Astrophysical Journal Letters, four for Solar Physics, one for Monthly Notices of the Royal Astronomical Society, and one for a conference proceeding
2004-present	Reviewed 58 grant proposals for NASA: 13 for the Solar and Heliospheric Physics (SHP) program, 14 for the Living with a Star (LWS) program, 13 for the Heliophysics Guest Investigator (HGI) program, and 18 for the Heliophysics Supporting Research program (HSR).
2010-present	Member of the Science Team for the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO)
2012	Served as the external Ph.D. Thesis Examiner for Marie Elizabeth Newington, Monash University, Melbourne, Australia
2009	Member of a NASA grant review panel: Strategic Resource and Technology (SRT) program

COMMUNITY OUTREACH

2015	Grade School Presentation, "Grand Tour of the Planets," 2 nd -grade science class,
	BASIS Oro Valley, Oro Valley, Arizona; Teacher: Jennifer Mattes
2021	Appeared in a Documentary, "Science Friction," 2022 release, Director: E. Emery,
	Discussed the responsibilities of a scientist when interacting with the public

PRESENTATIONS

Invited Presentations:

- "Meridional flow through the lens of helioseismology," COFFIES DSC Workshop on the Sun's Near-Surface Shear Layer, November 2023
- "The Tyranny of Sound: Sound-Proofing the Fluid Equations," GAFD Seminar, University of Colorado Boulder, Department of Applied Mathematics, September 2023
- "Rotation and Convection: How the Coriolis Force Can Lead to Travelling Wave Convection," Astrophysics Seminar, University of Exeter, Exeter UK, July 2023
- "Trapping of Thermal Rossby Waves within the Sun's Convection Zone," Fall Meeting of the American Geophysical Union, Chicago, December 2022
- "Thermal Rossby Waves in a Stratified Atmosphere," LWS Focused Science Team meeting, Boulder, July 2022
- "Thermal Rossby Waves within the Sun's Convection Zone," UK MHD Meeting, Sheffield UK, June 2022
- "Using the Morphology and Temporal Evolution of the Sun's High-Latitude Convection as a Probe of its Dynamo State," Fall Meeting of the American Geophysical Union, New Orleans, December 2021
- "Convective Flows at High-Latitude (and what they might say about the Sun's dynamo state)," Solar Orbiter – Dynamo and Solar Cycle Remote Sensing Working Group, Max Planck Institute, Germany, Remote, September 2021
- "Do Coronal Loops Oscillate in Isolation?" School of Mathematics and Statistics, University of Sheffield, Sheffield, UK, Remote, May 2021
- "Regimes of Rotating Convection," Geophysical/Astrophysical Fluid Dynamics Seminar, Dept. of Applied Mathematics, University of Colorado, Boulder, Colorado, April 2020
- "Are Coronal-Loop Oscillations Confined to the Visible Loop?" 16th annual meeting of the Asia Oceania Geoscience Society, Singapore, July 2019
- "Helioseismology," Geophysical/Astrophysical Fluid Dynamics Seminar, Dept. of Applied Mathematics, University of Colorado, Boulder, Colorado, February 2019
- "Solar Convection under the Influence of Rotation," Solar Focus Series, National Solar Observatory, Boulder, Colorado, December 2017
- "Solar Convection in the Rotationally Constrained Regime," School of Mathematics and Statistics, University of Sheffield, Sheffield, UK, January 2017
- "Helioseismic Imaging of Supergranulation within the Upper 30 Mm of the Convection Zone," National Solar Observatory, Boulder, Colorado, October 2016.
- "What's Happening inside the Sun," LWS / SDO Workshop, Squaw Valley, California, May 2011.
- "3D Helioseismic Inversions of Ring-Analysis Flow Measurements," GONG 2010, Aix-en-Provence, France, June 2010.
- "Measuring Meridional Circulation Deep within the Sun," IAU Symposium 271, Nice, France, June 2010.
- "Subsurface Circulations Established by Active Regions," SHINE 2009, Wolfville, Nova Scotia, Canada, Aug 2009.
- "Subsurface Circulations within Active Regions," HAO Seminar, High Altitude Observatory, Boulder, Colorado, April 2009.

- "The Generation of Coronal-Loop Waves below the Photosphere by *p*-Mode Forcing," Departmental Seminar, Applied Mathematics, University of Sheffield, UK, January 2008.
- "Ring Analysis," Solar Physics Division Summer School on Helioseismology, Boulder, Colorado, 2005.
- "Doppler Velocity and Intensity Measurements of *p*-Mode Surface Amplitudes," University of California, Northridge, California, 1998.

Oral Presentations:

- "Global Confinement of the Solar Tachocline by a Dynamo Magnetic Field," Hindman, B.W., Matilsky, L., Featherstone, N.A., & Toomre, J., Triennial Earth-Sun Summit (TESS) meeting, Belleview, WA, August 2022
- "Numerical/Theoretical Modeling of Solar Meridional Circulation," Hindman, B.W., Featherstone, N.A., Brown, B.P., Korre, L., & Camisassa, M., LWS Focused Science Team Meeting, July 2021
- "Using Observations of High-Latitude Flows to Ascertain the Sun's Convective Regime," Hindman, B.W., Featherstone, N.A., Lamb, D., & Brown, B.P., Fall Meeting of the American Geophysical Union, Online, December 2020.
- "Regimes of stellar convection as a function of rotation rate and Rayleigh number," StellarHydro Days V, University of Exeter, Exeter, United Kingdom, June 2019.
- "The Scaling Law for Rotating Stellar Convection in the High-Rayleigh-Number Regime," Hindman, B.W. & Featherstone, N.A., Fall Meeting of the American Geophysical Union, Washington D.C., December 2018.
- "Rotational Influence on Stellar Convection," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, October 2018.
- "Rotational Influence on Stellar Convection," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, October 2017.
- "Helioseismic Imaging of Supergranulation throughout the Sun's Near-Surface Shear Layer," Hindman, B.W. & Greer, B.J.,& Toomre, J., NSO, Boulder, Colorado, Oct 2016.
- "Helioseismic Imaging of Supergranulation throughout the Sun's Near-Surface Shear Layer," Hindman, B.W. & Greer, B.J.,& Toomre, J., American Astronomical Society—Solar Physics Division, Boulder, Colorado, May–June 2016.
- "Convective Energy Transport in the High-Rayleigh-Number Regime," Hindman, B.W. & Featherstone, N., NASA LWS Workshop on Solar Dynamo Frontiers: Helioseismology, 3D Modeling, and Data Assimilation, HAO, Boulder, Colorado, June 2015.
- "Are some coronal loop oscillations interference fringes?" Hindman, B.W. & Rekha, J., Solar Physics Discussion Group, NSO & LASP, Boulder, Colorado, December 2014.
- "Center-to-limb systematics for MDI," Hindman, B.W., HMI Workshop, Stanford University, Palo Alto, California, Jul 2014.
- "High-Resolution Ring Analysis," Hindman, B.W., Greer, B., Featherstone, N., & Toomre, J., 50th Anniversary of Helioseismology, Tucson, Arizona, May 2013.
- "Acoustic Imaging of the Solar Interior," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, Oct 2013.
- "Acoustic Imaging of the Solar Interior," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, Oct 2012.
- "Spatial Windowing in Ring Analysis," Hindman, B.W. & Greer, B., LWS Workshop, NSO, Tucson, Arizona, Mar 2012.

- "Acoustic Imaging of the Solar Interior," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, Oct 2011.
- "Acoustic Imaging of the Interior of the Sun," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, Jan 2010.
- "New 3-D inversion modules for ring-diagram data," HMI Science Team Meeting, Stanford, California, September 2009.
- "Subsurface Circulations Established by Active Regions," SHINE 2009, Wolfville, Nova Scotia, Canada, August 2009.
- "Local Helioseismology," Hindman, B.W., Faculty Research Talk, University of Colorado, Boulder, Colorado, Jan 2008.
- "Subsurface Flows and the Evolution of Solar Filaments," SOHO Workshop, Giardini Naxos, Sicily, Italy, May 2006.
- "Solar Subsurface Flows," GONG 2008 / SOHO XXI, Boulder, Colorado, October 2008.
- "Helioseismic Flow Comparisons," SDO Team Meeting, Napa, California, March 2008
- "Subsurface Flows Underlying a Filament," Boulder Solar Day, High Altitude Observatory, Boulder, Colorado, May 2006.
- "Solar Subsurface Weather: Recent Measurements of Flows Using Ring-Diagram Analysis," AAS meeting, Albuquerque, New Mexico, 2002.
- "Comparing Local Frequency Shifts Measured through Ring–Diagram Analyses with Global Frequency Shifts," 10th SOHO Workshop, Santa Cruz de Tenerife, Spain, October 2 2000.
- "Local *p*-Mode Frequency Shifts Used as Tracers of Solar Activity," 9th SOHO Workshop, Stanford, California, July 1999.
- "Acoustic Power Maps of Solar Active Regions," Joint SOHO/GONG Meeting, Stanford, California, December 1997.

Poster Presentations (since 2010):

- Hindman, B.W., Jain, R., & Blume, C. 2023, "A unifying model of mixed inertial modes in the Sun," *AGU Fall Meeting 2023*, abstract id. SH13D-27110
- Hindman, B.W., Fuentes, J.R., Cumming, A., & Anders, E. 2023, "Rotation decreases convective mixing in gas giants," *AGU Fall Meeting 2023*, abstract id. P23F-3107
- Blume, C., Hindman, B.W., & Matilsky, L.I. 2023, "Inertial Oscillations in a solar-like simulation," *AGU Fall Meeting 2023*, abstract id. P23G-3114
- Dikpati, M., Braun, D.C., Featherstone, N.A., Hindman, B.W., Komm, R., Liu, Y., Upton, L., Wang, H. 2023, "Implications of solar flows and waves for shaping the activity cycle," AGU Fall Meeting 2023, abstract id. SH13D-2810
- Hassler, D. et al. 2023, "Solaris: A focused solar polar mission," *AGU Fall Meeting 2023*, abstract id. SH32-10
- Blume, C., Hindman, B.W., & Matilsky, L.I. 2023, "Inertial Oscillations in a solar-like simulation," SHINE 2023 Workshop, abstract id. 016
- Fuentes, J.R., Hindman, B.W., Zhao, J., Blume, C., Camisassa, M., Featherstone, N.A., Hartlep, T., Matilsky, L.I., Korre, L. 2023, "Meridonal circulation through the lens of helioseismology," *SHINE* 2023 Workshop, abstract id. 020
- Hassler, D.M. et al. 2023, "Solaris: A focused solar polar mission," *SHINE 2023 Workshop*, abstract id. 017

- Dikpati, M., Braun, D.C., Featherstone, N.A., Hindman, B., Komm, R., Liu, Y., Upton, L., & ang, H. "Observations and Simulations of Solar Flows and Their Roles in Magnetic Activity Patterns at the Surface", AGU Fall Meeting 2022, abstract id. SH15D-1515
- Blume, C., Hindman, B.W., Matilsky, L., Korre, L., & Featherstone, N.A. 2022, "Confining the thermal spread of the tachocline", *AGU Fall Meeting 2022*, abstract id. SH15D-1501
- Hindman, B.W. & Jain, R. 2022, "Radial Trapping of Thermal Rossby Waves within the Sun's Convection Zone," Triennial Earth-Sun Summit (TESS) meeting 2022, abstract id. 341
- Stejko, A., Kosovichev, A.G., Featherstone, N.A., Guerrero, G., Hindman, B., Matilsky, L., & Warnecke, J. 2022, "Using time-distance helioseismology to constrain simulations of meridional circulation in the Sun, AGU Fall Meeting 2022, abstract id. SH14B-03
- Blume C., Hindman, B.W., & Matilsky, L. 2022, "Rossby Waves in the Radiative Interior," Triennial Earth-Sun Summit (TESS) meeting 2022, abstract id. 211
- Dikpati, M., Braun, D., Featherstone, N., Hindman, B., Komm, R., Liu, Y., Scherrer, P., Upton, L., & Wang, H. 2021, "Global Solar Flows and their Impact on Magnetic Activity," *AGU Fall Meeting* 2021, abstract id. SH55D-1872
- Hindman, B.W., Featherstone, N.A., & Julien, K. 2019, "Morphological Regimes of Rotating Convection in Stratified Spherical Shells," *AGU Fall Meeting 2019*, abstract id. NG43A-0890
- Matilsky, L.I., Hindman, B.W., & Toomre, J. 2018, "Exploring the influence of density contrast on solar near-surface shear," 20th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, id. 49
- Matilsky, L.I., Hindman, B.W., Toomre, J, & Featherstone, N. 2018, "The role of rotation in convective heat transport: an application to low-mass stars," *AAS Meeting #232*, id. 306.03
- Greer, B, Hindman, B., & Toomre, J. 2015, "High-res ring-diagram analysis of solar subsurface flows," *Advances in the Seismology of the Sun and Stars*, Mumbai, India.
- Greer, B., Hindman, B., & Toomre, J. 2014, "Measuring the solar meridional circulation using local helioseismology," *AGU Fall Meeting 2014*, abstract id.SH41B-4143
- Hindman, B.W. & Jain, R. 2014, "Interpreting coronal-loop oscillations as the modes of a 2D waveguide," *AGU Fall Meeting 2014*, abstract id.SH13A-4072
- Featherstone, N.A., Hindman, B.W., Thompson, M.J., & Toomre, J. 2011, "Probing subsurface flows around sunspots with 3-dimensional ring inversions," *SHINE 2011*, id. 17

PUBLICATIONS

Refereed Journal Articles:

- Blume, C., Hindman, B.W., & Matilsky, L.I. 2024, "Inertial waves in a nonlinear simulation of the Sun's convection zone and radiative interior," ApJ, submitted, (arXiv:2312.14270)
- Fuentes, J.R., Hindman, B.W., Zhao, J., Blume, C., Camisassa, M., Featherstone, N.A., Hartlep, T., Korre, L., Matilsky, L.I. 2024, "Assessing the observability of deep meridional flow cells in the solar interior," ApJ, 961, 78, (arXiv:2308.07513)
- Matilsky, L.I., Brummell, N.H., Hindman, B.W., & Toomre, J. 2024, "Confinement of the solar tachocline by a non-axisymmetric dynamo," ApJ, in press, (arXiv:2311.10202)
- Hindman, B.W. & Julien, K. 2024, "Low-frequency internal gravity waves are pseudo-incompressible," ApJ, 960, 64, (arXiv:2309.10079)
- Fuentes, J.R., Anders, E.H., Cumming, A., & Hindman, B.W. 2023, "Rotation reduces mixing of composition gradients in Jupiter and other gas giants," ApJL, 950, L4, (arXiv:2305.09921)
- Hindman, B.W. & Fuentes, J.R. 2023, "Dwindling surface cooling of a rotating Jovian planet leads to a convection zone that grows to a finite depth," ApJL, 957, L23, (arXiv:2310.16124)
- Hindman, B.W. & Jain, R. 2023, "Overstable convective modes in a polytropic stellar atmosphere," ApJ, 943, 127, (arXiv:2305.07064)
- Jain, R. & Hindman, B.W. 2023, "Latitudinal propagation of thermal Rossby waves in the solar convection zone," ApJ, 958, 48, (arXiv:2309.12903)
- Hindman, B.W. & Jain, R. 2022, "Radial trapping of thermal Rossby waves within the convection zones of low-mass stars," ApJ, 932, 68, (arXiv:2205.02346)
- Matilsky, L.I., Hindman, B.W., Featherstone, N.A., Blume, C., & Toomre, J. 2022, "Confinement of the solar tachocline by non-axisymmetric dynamo magnetic field," ApJL, 940, L50, (arXiv:2206.12920)
- Stejko, A.M., Kosovichev, A., Featherstone, N.A., Guerrero, G., Hindman, B.W., Matilsky, L.I., & Warnecke, J. 2022, "Constraining global solar models through helioseismic analysis," ApJ, 934, 161, (arXiv:2204.05207)
- Hindman, B.W. & Jain, R. 2021, "Do coronal loops oscillate in isolation?" ApJ, 291, 29, (arXiv:2108.04362)
- Hindman, B.W., Featherstone, N.A., & Julien, K. 2020, "Morphological classification of the convective regimes in rotating stars," ApJ, 898, 120
- Matilsky, L.I., Hindman, B.W., & Toomre, J. 2020, "Revisiting the Sun's strong differential rotation along radial lines," ApJ, 898, 111, (arxiv:2004.00208)
- Nagashima, K., Birch, A.C., Schou, J., Hindman, B.W., & Gizon, L. 2020, "An improved multi-ridge fitting method for ring-diagram helioseismic analysis," A&A, 633, A109, (arxiv:1911.07772)
- Allian, F., Jain, R., & Hindman, B.W. 2019, "A new analysis procedure for detecting periodicities within complex solar coronal arcades," ApJ, 880, 3, (arxiv:1902.06644)
- Matilsky, L.I., Hindman, B.W., & Toomre, J. 2019, "The role of downflows in establishing solar nearsurface shear," ApJ, 871, 217, (arXiv:1810.00115)
- Hindman, B.W. & Jain, R. 2018, "A novel approach to resonant absorption of the fast MHD eigenmodes of a coronal arcade," ApJ, 858, 6, (arXiv:1803.08948)
- Orvedahl, R.J., Calkins, M.A., Featherstone, N.A., & Hindman, B.W. 2018, "Prandtl-number effects in high-Rayleigh-number spherical convection," ApJ, 856, 13, (arXiv:1803.07035)
- Featherstone, N.A. & Hindman, B.W. 2016a, "The spectral amplitude of stellar convection and its scaling in the high-Rayleigh-number regime," ApJ, 818, 32, (arXiv: 1511.02396)
- Featherstone, N.A. & Hindman, B.W. 2016b, "The emergence of supergranulation as a natural consequence of rotationally-constrained interior convection," ApJL, 830, L15, (arXiv: 1609.05153)

- Greer, B.J., Hindman, B.W., & Toomre, J. 2016b, "Helioseismic imaging of supergranulation throughout the Sun's near-surface shear layer," ApJ, 824, 128
- Greer, B.J., Hindman, B.W., & Toomre, J. 2016a, "Helioseismic measurement of the Rossby number in the Sun's near-surface shear layer," ApJ, 824, 4
- Hindman, B.W. & Jain, R. 2015, "Eigenmodes of 3-D magnetic arcades in the Sun's corona," ApJ, 814, 105, (arXiv: 1511.09411)
- Greer, B.J., Hindman, B.W., Featherstone, N.A., & Toomre, J. 2015, "Helioseismic imaging of fast convective flows throughout the near-surface shear layer," ApJL, 803, L17, (arXiv: 1504.00699)
- Jain, R., Maurya, R.A., & Hindman, B.W. 2015, "Fundamental-mode oscillations of two coronal loops within a solar magnetic arcade," ApJL, 804, L19, (arXiv:1504.07822)
- Gascoyne, A., Jain, R., & Hindman, B.W. 2014, "Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere," ApJ, 789, 109, (arXiv:1405.0130)
- Greer, B., Hindman, B.W., & Toomre, J. 2014, "Multi-ridge fitting for ring-diagram helioseismology," SoPh, 289, 2823, (arXiv:1402.5166)
- Hindman, B.W. & Jain, R. 2014, "An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns," ApJ, 784, 103, (arXiv: 1312.1922)
- Jain, R., Gascoyne, A., Hindman, B.W., & Greer, B. 2014, "Five-minute oscillation power within magnetic elements in the solar atmosphere," ApJ, 796, 72, (arXiv:1405.0695)
- Hindman, B.W. & Jain, R. 2013, "Equilibrium models of coronal loops that involve curvature and buoyancy," ApJ, 778, 174, (arXiv: 1308.0620)
- Hindman, B.W. & Jain, R. 2012, "Axisymmetric Scattering of p Modes by Thin Magnetic Tubes," ApJ, 746, 66, (arXiv: 1106.5078)
- Jain, R. & Hindman, B.W. 2012, "What can be learned from the seismology of a coronal loop using only a handful of frequencies?" A&A, 545, A138.
- Featherstone, N.A., Hindman, B.W. & Thompson, M.J. 2011, "Ring-analysis measurements of sunspot outflows," in Proc. GONG 2010 SoHO 24: A new era of seismology of the Sun and solar-like stars, J. Phys. Conference Series vol. 271, 012002.
- Gascoyne, A., Jain, R. & Hindman, B.W. 2011, "Sensitivity of p-Mode Absorption on Magnetic Region Properties and Kernel Functions," A&A, 526, 93.
- Jain, R., Gascoyne, A. & Hindman, B.W., 2011, "Interaction of p modes with an ensemble of thin magnetic-flux tubes," MNRAS, 415, 1276.
- Jain, R., Gascoyne, A. & Hindman, B.W. 2011, "Axisymmetric absorption of p modes by an ensemble of thin, magnetic-flux tubes," in Proc. GONG 2010 SoHO 24: A new era of seismology of the Sun and solar-like stars, J. Phys. Conference Series vol. 271, 012016.
- Miesch, M.S. & Hindman, B.W. 2011, "Gyroscopic Pumping in the Solar Near-Surface Shear Layer," ApJ, 743, 79, (arXiv:1106.4107)
- Routh, S., Haber, D.A., Hindman, B.W., Bogart, R.S. & Toomre, J., 2011, "The Influence of Tracking Rate on Helioseismic Flow Inferences," in Proc. GONG 2010 – SoHO 24: A new era of seismology of the Sun and solar-like stars, J. Phys. Conference Series vol. 271, 012014.
- Gough, D. & Hindman, B.W. 2010, "Helioseismic detection of deep meridional flow," ApJ, 714, 960, (arXiv:0911.2013)
- Moradi, H., Baldner, C., Birch, A.C., Braun, D.C., Cameron, R.H., Duvall, T.L., Jr., Gizon, L., Haber, D., Hanasoge, S.M., Hindman, B.W., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, P., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H.J., Spruit, H.C., Strassmeier, K.G., Thompson, M.J.

& Zharkov, S. 2010, "Modeling the Subsurface Structure of Sunspots," SoPh, 267, 1, (arXiv: 0904.1575)

- Gordovskyy, M., Jain, R. & Hindman, B.W. 2009, "The role of mode mixing in the absorption of pmodes," ApJ, 694, 1602.
- Hindman, B.W., Haber, D.A. & Toomre, J. 2009, "Subsurface circulations within active regions," ApJ, 698, 1749, (arXiv: 0904.1575)
- Jain, R., Hindman, B.W., Braun, D.C. & Birch, A.C. 2009, "Absorption of p modes by thin magnetic flux tubes," ApJ, 695, 325.
- Hindman, B.W. & Jain, R. 2008, "The generation of coronal loop waves below the photosphere by pmode forcing," ApJ, 667, 769, (arXiv:0805.1942)
- Birch, A.C., Gizon, L., Hindman, B.W. & Haber, D.A. 2007, "The linear sensitivity of ring diagrams to local flows," ApJ, 662, 730.
- Komm, R., Howe, R., Hill, F., Miesch, M., Haber, D.A. & Hindman, 2007, "Divergence and vorticity of subsurface flows derived from ring-diagram analysis of MDI and GONG data," ApJ, 667, 571.
- Hindman, B.W., Haber, D.A. & Toomre, J. 2006, "Helioseismically determined near-surface flows underlying a quiescent filament," ApJ, 653, 725.
- Howe, R., Komm, R.W., Gonzalez-Hernandez, I., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J. & Thompson, M.J., 2006, "Large-scale zonal flows near the solar surface," SoPh, 235, 1.
- Mason, D., Komm, R.W., Hill, F., Howe, R., Haber, D.A. & Hindman, B.W., 2006, "Flares, magnetic fields, and subsurface vorticity: a survey of GONG and MDI data," ApJ, 645, 1543.
- Hindman, B.W., Gough, D.O., Thompson, M.J. & Toomre, J., 2005, "Helioseismic ring analyses of artificial data computed for two-dimensional shearing flows," ApJ, 621, 512.
- Haber, D.A., Hindman, B.W., Toomre, J. & Thompson, M.J. 2004, "Organized subsurface flows near active regions," SoPh, 220, 371.
- Hindman, B.W., Gizon, L., Duvall, T.J., Jr., Haber, D.A. & Toomre, J. 2004, "Comparison of solar subsurface flows assessed by ring and time-distance analyses," ApJ, 613, 1253.
- Howe, R., Komm, R.W., Hill, F., Haber, D.A. & Hindman, B.W. 2004, "Activity-related changes in local solar acoustic mode parameters from Michelson Doppler Imager and Global Oscillations Network Group," ApJ, 608, 562.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M. & Hill, F., 2002, "Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis," ApJ, 570, 855.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Thompson, M.J. & Hill, F., 2000, "Solar shear flows deduced from helioseismic dense-pack samplings of ring diagrams," SoPh, 192, 335.
- Hindman, B.W., Haber, D.A., Toomre, J. & Bogart, R.S., 2000, "Local fractional frequency shifts used as tracers of magnetic activity," SoPh, 192, 363.
- Hindman, B.W. & Brown, T.M., 1998, "Acoustic power maps of solar active regions," ApJ, 504, 1029.
- Hindman, B.W., Jain, R. & Zweibel, E.G., 1997, "The surface amplitudes and frequencies of p-mode oscillations in active regions," ApJ, 476, 392.
- Bogdan, T.J., Hindman, B.W., Cally, P.S. & Charbonneau, P., 1996, "Absorption of p-modes by slender magnetic flux tubes and p-mode lifetimes," ApJ, 465, 406.
- Hindman, B.W., Zweibel, E.G. & Cally, P.S., 1996, "Driven acoustic oscillations within a vertical magnetic field," ApJ, 459, 760.

- Jain, R., Hindman, B.W. & Zweibel, E.G., 1996, "The influence of magnetism on p-mode surface amplitudes," ApJ, 464, 476.
- Hindman, B.W. & Zweibel, E.G., 1994, "The effects of a hot outer atmosphere on acoustic-gravity waves," ApJ, 436, 929.

Proceedings Papers:

- Nagashima, K., Birch, A.C., Schou, J., Hindman, B., & Gizon, L. 2018, "Towards improved multi-ridge fitting method for ring-diagram analysis," in Proc. 2018 SDO Science Workshop: Catalyzing Solar Connections, id.50
- Birch, A., Duvall, T., Gizon, L., Hanasoge, S., Hindman, B., Nagashima, K., & Sreenivasan, K. 2018,
 "Revisiting helioseismic constraints on subsurface convection," in Proc. 2018 SDO Science
 Workshop: Catalyzing Solar Connections, id.50
- Matilsky, L.I., Hindman, B.W., & Toomre, J. 2018, "Exploring the influence of density contrast on solar near-surface shear," in Proc. of 20th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. S.J. Wolk, id. 49, (arXiv:1811.00665)
- Greer, B., Hindman, B.W., Toomre, J. 2013, "Center-to-Limb Velocity Systematic in Ring-Diagram Analysis," in Proc. NSO Workshop #17: Fifty Years of the Seismology of the Sun and Stars, eds. K. Jain, S. Tripathy, F.. Hill, and A. Pevtsov, ASP Conference Series vol. 478, 199
- Jain, R., Hindman, B.W., Braun, D.C. & Birch, A.C. 2009, "Absorption of p modes by magnetic plage," in Proc. SOHO 21 / GONG 2008: Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology, (eds. M. Dikpati, T. Arentoft, I. Gonzalez-Hernandez, C. Lindsey, F. Hill), ASP Conference Series vol. 416, 55.
- Howe, R., Haber, D.A., Hindman, B.W., Komm, R., Hill, F. & González-Hernández, I., 2008, "Helioseismic Frequency Shifts in Active Regions," in Proc. NSO Workshop #24 – Subsurface and Atmospheric Influences on Solar Activity, (eds. R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie), ASP Conference Series vol. 383, 305.
- Burtseva, O., González-Hernández, I., Hill, F., Howe, R., Jain, K., Kholikov, S., Komm, R., Leibacher, J., Toner, C., Tripathy, S., Haber, D., Hindman, B., Ladenkov, O. & Chou, D.–Y., 2006, "MDI and GONG inferences of the changing Sun," in Proc. SOHO 17 – 10 Years of SOHO and Beyond, (ed.H. Lacoste & L. Ouwehand), ESA SP-617, 41.
- Featherstone, N.A., Haber, D.A., Hindman, B.W. & Toomre, 2006, "Helioseismic probing of giant cell flows," in Beyond the Spherical Sun, (ed. K. Fletcher), ESA SP-624, 133.
- Haber, D.A., Hindman, B.W., Toomre, J. & Bogart, R.S., 2006, "Large-scale circulations using ringanalysis," in Beyond the Spherical Sun, (ed. K. Fletcher), ESA SP-624, 45.
- Hindman, B.W., Haber, D.A. & Toomre, J., 2006, "Subsurface convective flows within active regions," in Beyond the Spherical Sun, (ed. K. Fletcher), ESA SP-624, 11.
- Brown, B.P., Haber, D.A., Hindman, B.W. & Toomre, J., 2004, "Variations of solar subsurface weather in the vicinity of active regions," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 345.
- Featherstone, N.A., Haber, D.A., Hindman, B.W. & Toomre, J., 2004, "Time-distance helioseismology: a fourier transform method and measurement of Reynolds stresses," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 428.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S. & Thompson, M.J., 2004, "Subphotospheric flows near active region NOAA 10486," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 148.

- Haber, D.A. & Hindman, B.W., 2004, "Solar meridional flows: recent findings," in Highlights of Astronomy, International Astronomical Union, (ed. O. Engvold), JD12, vol. 13, 44.
- Hindman, B.W., Featherstone, N.A., Haber, D.A., Musman, S. & Toomre, J., 2004, "Comparison of local helioseismic techniques applied to MDI Doppler data," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 460.
- Howe, R., Gonzalez-Hernandez, I., Komm, R.W., Hill, F., Haber, D.A. & Hindman, B.W., 2004, "A tale of two regions: acoustic power maps and magnetic activity in AR 10486 and AR 10488," in Helioand Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 480.
- Howe, R., Komm, R.W., Gonzalez-Hernandez, I., Hill, F., Haber, D.A. & Hindman, B.W., 2004, "Local frequency shifts from GONG and MDI," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 484.
- Komm, R., Howe, R., Gonzalez-Hernandez, I., Hill, F., Haber, D., Hindman, B. & Corbard, T., 2004, "Solar subsurface flows and vorticity," in Helio- and Asterioseismology: Towards a Golden Future, (ed. D. Danesy), ESA SP-559, 520.
- Corbard, T., Toner, C., Hill, F., Hanna, K.D., Haber, D.A., Hindman, B.W. & Bogart, R.S., 2003, "Ringdiagram analysis with GONG++," in Proc. of SOHO 12 / GONG++ Local and Global Helioseismology: The Present and Future, (ed. H. Sawaya-Lacoste), ESA SP-517, 255.
- Haber, D.A., Hindman, B.W. & Toomre, J., 2003, "Interaction of solar subsurface flows with major active regions," in Proc. of SOHO 12 / GONG++ Local and Global Helioseismology: The Present and Future, (ed. H. Sawaya-Lacoste), ESA SP-517, 103.
- Hindman, B.W., Gizon, L., Haber, D.A., Duvall, Jr., T. & Toomre, J., 2003, "Comparison of near-surface flows assessed by ring-diagram and f-mode time-distance analyses," in Proc. of SOHO 12 / GONG++ Local and Global Helioseismology: The Present and Future, (ed. H. Sawaya-Lacoste), ESA SP-517, 299.
- Toner, C.G., Haber, D., Corbard, T., Bogart, R., & Hindman, B., 2003, "An Image Merge for GONG+," in Proc. of SOHO 12 / GONG++ Local and Global Helioseismology: The Present and Future, (ed. H. Sawaya-Lacoste), ESA SP-517, 405.
- Barban, C., Howe, R., Hill, F., Komm, R.W., Leibacher, J., Toner, C., Bogart, R., Braun, D., Haber, D., Hindman, B. & Lindsey, C., 2002, "MDI and GONG inferences of the changing solar interior," in Proc. SOHO 11 Symposium: From Solar Min to Max: Half a Solar Cycle with SOHO, (ed. A. Wilson), ESA SP-508, 55.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S. & Hill, F., 2001, "Daily variations of large-scale subsurface flows and global synoptic flow maps from dense-pack ring-diagram analyses," in Proc. SOHO 10/GONG 2000 Workshop, Helio- and Astero-seismology at the Dawn of the Millenium, (eds. A. Eff-Darwich & A. Wilson), ESA SP-464, 209.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S. & Hill, F., 2001, "Development of multiple cells in meridional flows and evolution of mean zonal flows from ring-diagram analyses," Proc. SOHO 10/GONG 2000 Workshop, Helio- and Astero-seismology at the Dawn of the Millenium, (eds. A. Eff-Darwich & A. Wilson), ESA SP-464, 213.
- Haber, D.B., Hindman, B.W., Toomre, J., Bogart, R.S. & Hill, F., 2001, "Subsurface flows with advancing solar cycle using dense-pack ring-diagram analyses," in IAU 2000 Workshop: Recent Insights into the Physics of the Sun and Heliosphere Highlights from SOHO and Other Space Missions, (eds. P. Brekke, B. Fleck, & J.B. Gurman), ASP Conference Series, Vol. 200, 2001, 211.
- Hindman, B.W., Haber, D.A., Toomre, J. & Bogart, R.S., 2001, "Comparing local frequency shifts measured through ring-diagram analyses with global frequency shifts," in Proc. SOHO 10/GONG 2000 Workshop, Helio- and Asteroseismology at the Dawn of the Millenium, (eds. A. Eff-Darwich & A. Wilson), ESA SP-464, 143.

- Hindman, B.W., Haber, D.H., Toomre, J. & Bogart, R.S., 2001, "Fractional frequency shifts of local helioseismic modes with magnetic activity using ring-diagram analysis," in IAU 2000 Workshop:
 Recent Insights into the Physics of the Sun and Heliosphere Highlights from SOHO and Other Space Missions, (eds. P. Brekke, B. Fleck, & J.B. Gurman), ASP Conference Series, Vol. 200, 2001, 215.
- Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Schou, J. & Hill, F., 1998, "Subphotospheric convective flows determined by ring-diagram analyses of SOI-MDI observations," in SOHO 6/GONG 98 Workshop: Structure and Dynamics of the Interior of the Sun and Sun-like Stars, (eds. S. Korzennik & A. Wilson), ESA SP-418, 791.
- Hindman, B.W., Zweibel, E.G. & Cally, P.S., 1995, "Driven Acoustic Oscillations Within a Vertical Magnetic Field," in Fourth SOHO Workshop: Helioseismology, (eds. J.T. Hoeksema, V. Domingo, B. Fleck, & B. Battrick), ESA SP-376, 77.
- Jain, R., Hindman, B.W. & Zweibel, E.G., 1995, "Changes in the Upper Turning Point Due to Magnetism," in Fourth SOHO Workshop: Helioseismology, eds. J.T. Hoeksema, V. Domingo, B. Fleck, & B. Battrick, ESA SP-376, 63.
- Hindman, B.W. & Zweibel, E.G., 1994, "The Effects of a Hot Outer Atmosphere on Acoustic-Gravity Waves," in GONG 1994: Helio– and Asteroseismology From the Earth and Space, eds. (R.K. Ulrich, E.J. Rhodes, & W. Däppen), 366.

Data and Code Repositories

- Anders, E., Fuentes, R., Cumming, A., & Hindman, B.W., 2023, "evanhanders/rotation_reduces_entrainment: Code Release," <u>https://zenodo.org/record/7950969</u>
- Featherstone, N.A., Hindman, B.W., & Matilsky, L. 2020, Rayleigh simulation library, https://osf.io/j275z/
- Hindman, B. W., Featherstone, N. A., & Julien, K. 2020, Morphological classification of the convective regimes in rotating stars, <u>https://osf.io/qbt32/</u>

Doctoral Thesis:

Hindman, B.W., 1995, "The seismology of active regions and the solar atmosphere," Ph.D. Dissertation, University of Colorado at Boulder.

Unique ArXiv Papers:

- Hindman, B.W. & Jain, R. 2012, "Kink oscillations of a curved, gravitationally stratified, coronal loop," unpublished elsewhere, (arXiv: 1209.5734)
- Hindman, B.W. 2012, "An Improved Method for Fitting p-Mode Profile Asymmetries," unpublished elsewhere, (arXiv: 1112.4790)
- Featherstone. N.A. et al. 2023, "The Puzzling Structure of Solar Convection: Window into the Dynamo," White paper, United States National Academies Solar and Space Physics (Heliophysics) Decadal Survey, (arXiv:2305.08823)
- Hassler, D.M. et al. 2023, "Solaris: A Focused Solar Polar Discovery-class Mission to achieve the Highest Priority Heliophysics Science Now," White paper, United States National Academies Solar and Space Physics (Heliophysics) Decadal Survey, (arXiv:2301.07647)