

Steven D. Jacobsen

Department of Geological Sciences
University of Colorado Boulder
Boulder, CO 80309

<https://www.colorado.edu/geologicalsciences/steve-jacobsen>

*Curriculum Vitae
and List of Publications*

steven.jacobsen@colorado.edu
January 2026

Education

Ph.D. Geophysics, University of Colorado, 2001
M.S. Geology, University of Colorado, 1998
B.A. Geology, University of Colorado, 1995

Positions Held

Professor (2025-present) University of Colorado Boulder, Department of Geological Sciences
Professor (2016-2025) Northwestern University, Department of Earth and Planetary Sciences

Faculty Affiliate, Paula M. Trienens Institute for Sustainability and Energy

Faculty Affiliate, Center for Engineering Sustainability and Resilience

Faculty Member, Graduate Program in Applied Physics

Associate Professor (2011-2016); **Assistant Professor** (2006-2011)

Northwestern University, Department of Earth and Planetary Sciences

Research Scientist (2005-2006)

Carnegie Institution for Science, Earth and Planets Laboratory, Washington D.C.

Barbara McClintock Fellow, Postdoctoral Research Associate (2004-2005)

Carnegie Institution for Science, Earth and Planets Laboratory, Washington D.C.

Alexander von Humboldt Fellow, Postdoctoral Research Associate (2001-2003)

Bayerisches Geoinstitut, University of Bayreuth, Germany

CIRES Graduate Research Fellow (1999-2000)

Cooperative Institute for Research in Environmental Sciences, University of Colorado

Graduate Research Assistant (1995-2001)

University of Colorado, Department of Geological Sciences

Research Assistant (1994-1995 and 1997)

United States Geological Survey, National Ice Core Laboratory, Lakewood, Colorado

University of Nevada, Reno, Desert Research Institute, National Ice Core Laboratory

Research Statement

I am a mineralogist and materials scientist doing physical chemistry in extreme environments. Extremes may include high pressure or temperature, low temperature, radiation, and combinations found throughout the solar system. Applications span geophysical, planetary, chemical and materials sciences. I specialize in hydrogen bonding and am interested in the role of minerals in cycling biocritical elements (like C, O, H, and N) in the Earth. The conditions found deep in planets are rich for discovery of new compounds with functional properties, such as novel intermetallic compounds or superhard materials for operation in extreme environments. I am currently involved in a study on electrodeposition of carbonates in marine soils and PI of a cooperative agreement with NASA/MSFC and industry for development of off-world construction technology from regolith on the lunar south pole.

Awards and Fellowships

Friedrich Wilhelm Bessel Research Award, 2014

Alexander von Humboldt Foundation

Weinberg College Distinguished Teaching Award, 2013

Northwestern University, Weinberg College of Arts and Sciences

Presidential Early Career Award for Scientists and Engineers (PECASE), 2008

White House OSTP, Obama Administration. Citation: For innovative experimental research to elucidate the critical role of water on the physical properties of the Earth's deep interior. Further recognition for prioritizing science education at all levels and proactively working to close the minority achievement gap in science and mathematics.

Packard Fellowship for Science and Engineering, 2008

David and Lucile Packard Foundation

Elastic properties of superhard materials using gigahertz-ultrasound.

Faculty Early Career Development Award (CAREER), 2008

National Science Foundation

Mineralogical Society of America Distinguished Lecturer, 2007

Mineralogical Society of America

Barbara McClintock Postdoctoral Fellowship, 2005

Carnegie Institution of Washington

Alexander von Humboldt Fellowship, 2002

Bayerisches Geoinstitut, University of Bayreuth, Germany

E.H. Kraus Grant for Research in Crystallography, 2001

Mineralogical Society of America

Excellence in Trades Award, 2001

University of Colorado, Department of Physics

Mineral and Rock Physics Graduate Research Award, 2000

American Geophysical Union

Longley, Wahlstrom, Warner Award, 2000

University of Colorado, Department of Geological Sciences

CIRES Graduate Research Fellowship, 2000

Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado

Patents

Title: Optical Contact Micrometer

Patent number: 8,810,904

Filing date: 02/09/2012; Awarded 08/19/2014.

The optical contact micrometer consists of a double-contact micrometer interfaced with an optical heterodyne interferometer to achieve high-spatial resolution, high-precision sample thickness measurements for calibrating a variety of material physical properties measurements on samples for spectroscopic, ultrasonic, and shockwave studies. Examples include application to determining elastic properties of diamond and related superhard materials.

Funding and Research Awards

NASA Marshall Space Flight Center (MSFC) Cooperative Agreement	\$122,279
Dual Use Technology Development at MSFC, in partnership with ICON Tech. Inc. “Micro-Raman for Offworld Construction (μROC)” PI, award dates: 01/01/2024-12/31/2024; under NCE 01/01/2025-12/31/2025	
DOE/NNSA, Chicago/DOE Alliance Center (CDAC-V) Sub-award	\$455,245
SSAA Program of the National Nuclear Security Administration “Chicago-DOE Alliance Center: A Center of Excellence for Materials at Extremes” Partner, subaward-PI, award dates: 07/01/2024-06/30/2028	
Z-Fundamental Science Proposal: Sandia National Laboratory	(in-kind)
“Origin of the Ultra-Low Velocity Zones atop Earth’s core-mantle boundary: Shock-ramp compression of iron-rich (Mg,Fe)O” PI, awarded eight dedicated shots on the Z machine 2021-2027; ~\$1.5M	
DOE/NNSA, Chicago/DOE Alliance Center (CDAC-IV) Sub-award	\$340,015
SSAA Program of the National Nuclear Security Administration “Chicago-DOE Alliance Center: A Center of Excellence for High Pressure Science and Technology” Partner, subaward-PI, award dates: 07/01/2020-06/30/2024	
National Science Foundation (EAR-1853521) Geophysics Program	\$472,282
“Superdeep Diamonds from the Transition Zone and Lower Mantle” PI, award dates: 02/01/2019-01/31/2022; NCE to 01/31/2023	
DOE/NNSA, Capital/DOE Alliance Center (CDAC-IV) Sub-award	\$120,902
SSAA Program of the National Nuclear Security Administration “Capital-DOE Alliance Center: A Center of Excellence for High Pressure Science and Technology” Partner, award dates: 10/01/2018-06/12/2020	
NASA (Emerging Worlds)	\$96,833
“Evolution of Hydrogen in the Inner Solar System: Volatile Abundances and Isotopic Compositions in CAIs and Chondrules from Primitive Carbonaceous Chondrites” PI (Erik Hauri), co-I (Conel Alexander), co-I (Ruslan Mendybaev), co-I (Steve Jacobsen) Award dates: 03/06/2018-03/05/2021; NCE to 03/05/2022	
National Science Foundation (DMR-1508577) Ceramics	\$298,701
“Hardness and Elastic Properties of Superhard and Ultrahard Materials” PI (co-PI, C.R. Bina) award dates: 07/2015-06/2018; NCE to 06/2018	
National Science Foundation (EAR-1452344) Geophysics Program	\$343,479
“Hydration State of the Transition Zone and Lowermost Mantle” PI, award dates: 01/2015-01/2018; NCE to 01/2019	
DOE/NNSA, Carnegie/DOE Alliance Center (CDAC-III) Sub-award	\$427,953
SSAA Program of the National Nuclear Security Administration “High-pressure elastic properties of minerals, glasses, and superhard materials” Partner, subaward-PI, award dates: 03/2013-02/2018	
David and Lucile Packard Fellowship for Science and Engineering	\$875,000
“Elastic properties of superhard materials using gigahertz-ultrasound” PI, award dates: 11/2008-11/2013 (extended to 11/2017)	
National Science Foundation (CAREER EAR-0748707) Geophysics Program	\$509,328
“Effects of hydration on the physical properties of mantle materials from atomic to geophysical scales.” With PECASE. PI, award dates: 01/2008-12/2013	

DOE/NNSA, Carnegie/DOE Alliance Center (CDAC-II) Sub-award	\$271,167
SSAA Program of the National Nuclear Security Administration	
“ <i>Elasticity of superhard materials using GHz-ultrasonic interferometry</i> ”.	
Partner, subaward-PI, award dates: 03/2008-02/2013	
National Science Foundation (EAR-0948953) Instrumentation and Facilities	\$176,155
“ <i>Acquisition of a Single-Crystal X-ray Diffractometer for Earth and Planetary Materials Research and Education at Northwestern University</i> ”.	
PI, award dates: 11/2010-10/2011	
National Science Foundation (EAR-0651173) Instrumentation and Facilities	\$54,500
“ <i>Acquisition of a broadband oscilloscope for GHz-ultrasonic studies of mineral elasticity in the diamond anvil cell</i> ”. PI, award dates: 02/2007-2/2008	
National Science Foundation (EAR-0440112/EAR-0721449) Geophysics Program	\$298,671
“ <i>High P-T elasticity of deep Earth materials with new Gigahertz-ultrasonic techniques</i> ”	
PI (co-PI, R.J. Hemley), award dates: 12/2004-12/2008; \$159,970 to Northwestern	
<i>Grants internal to Northwestern:</i>	
Northwestern University, Center for Engineering Sustainability and Resilience	\$60,000
“ <i>SEACRET: Strengthening Electrochemically Any Coastal Region without Environmental Threats</i> ” Alessandro Rotta Loria (PI); Steve Jacobsen (co-PI)	
Award dates: 12/01/21-5/31/23	
Northwestern University, Innovative Initiatives Incubator (I3) Grant	\$240,000
“ <i>Charting high-pressure phase space for undiscovered magnetic materials</i> ”	
Danna Freedman (PI), Steve Jacobsen (co-PI), Christopher Wolverton (co-PI)	
Award dates: 09/2016-08/2018 (\$73k to Jacobsen)	
Northwestern University, Data Science Research Grant	\$50,000
“ <i>High-pressure materials design and discovery using big quantum data</i> ”	
Christopher Wolverton (PI), Steve Jacobsen (co-PI); Award dates: 09/2016-08/2017	
Northwestern University, Weinberg College of Arts and Sciences, Hewlett Grant	\$34,374
“ <i>Establishment of an Earth and Planetary Materials Undergraduate Teaching Laboratory.</i> ” PI, Award date: 09/2006	
Northwestern University, Weinberg College of Arts and Sciences, Hewlett Grant	\$5,639
“ <i>Modernization of Northwestern’s rock and mineral collection in support of innovative undergraduate education and public outreach.</i> ” PI, Award date: 06/2010	

Teaching

GEOL-2005: University of Colorado Boulder, *Earth Materials*

GEOL-major required course covering all general aspects of geomaterials

GEOL-3010: University of Colorado Boulder, *Introduction to Mineralogy*

Core major course focusing on structure, properties and applications of minerals in science, society, and the future low-carbon economy, typically enrolls 20 students across Arts and Sciences and Engineering schools.

EARTH-101: Northwestern University, *Earth Science for the 21st Century*

TED-style Earth science for non-science majors enrolling 250-450 students annually.

EARTH-102: Northwestern University, *The Future of Renewable Energy*

Freshman seminar with capped enrollment of 15.

EARTH-300: Northwestern University, *Earth and Planetary Materials*

Core major course focusing on structure, properties and applications of minerals in science, society, and the future low-carbon economy, typically enrolls 20 students across Arts and Sciences and Engineering schools.

EARTH-301: Northwestern University, *Petrology: Evolution of crustal and mantle rocks*

Core major course with emphasis on thermodynamics and phase diagrams as well as a field trip to the UP-Michigan, enrolls 8-12 students.

EARTH-438: Northwestern University, *Advanced Graduate Seminar*

Recent offerings: *Water in the Solar System*

Mineral Physics

Trailblazers

Shock Compression of Condensed Matter

Service and Outreach

<i>Review Coordinator, Optimizing the USGS Mineral Resources Program Science Portfolio</i>	2024-
National Academies of Sciences, Engineering and Medicine (NASEM)	
<i>Member, MSA Award Committee, Mineralogical Society of America</i>	2024-
<i>Chair, Advisory Board, Energy Frontier Research Center (EFRC), Northwestern</i>	2022-
Hydrogen in Energy and Information Sciences, PI Sossina Haile	
<i>Senator, Faculty Senate of Northwestern University</i>	2022-2024
<i>Member, Executive Committee</i>	2023-2024
<i>Chair, Committee on Cause</i>	2023-2024
<i>Member, Salary and Benefits Committee</i>	2022-2023
<i>Director, Graduate Recruiting and Admissions, Dept. Earth and Planetary Sciences</i>	2023-2025
<i>Member, Advisory Committee, J.B. Cohen X-ray Diffraction Laboratory</i>	2016-2025
Department of Materials Science and Engineering, Northwestern University	
<i>Member, Committee on Catalyzing Opportunities for Research in Earth Sciences</i>	2018-2020
(CORES): a Decadal Survey for NSF's Division of Earth Sciences (NASEM)	
<i>Director, Graduate Recruiting and Admissions, Dept. Earth and Planetary Sciences</i>	2015-2020
<i>Member, Committee on Solid Earth Geophysics (NASEM)</i>	2015-2020
<i>Member, Curricular Policy Committee, Weinberg College of Arts and Sciences</i>	2016-2019
<i>Member, NSF-COMPRES Nominations Committee</i>	2019

<i>Member</i> , DOE Beamline Advisory Team, NSLS-II FIS/MET beamline National Synchrotron Light Source-II	2015-2018
<i>Member</i> , Executive Committee of NSF-COMPRES, NSF-Consortium for Materials Properties Research in Earth Sciences (COMPRES)	2015-2018
<i>Chair</i> , NSF-COMPRES Nominations Committee	2011, 2016, 2017
<i>Member</i> , Administrative Board of The Graduate School, Northwestern	2012-2016
<i>Associate Head</i> , Public Affairs Residential College, Northwestern University	2009-2014
<i>Member</i> , Review Panel, NSF Geophysics Program Postdoctoral Fellowships	2014
<i>Member</i> , Laser Safety Committee, Northwestern University	2008-2014
<i>Member</i> , NSF-COMPRES Education, Outreach and Infrastructure Development	2008-2014
<i>Member</i> , Space Planning Committee, NU Dept. Earth and Planetary Sciences	2008-2012
<i>Director of Computing</i> , NU Dept. Earth and Planetary Sciences	2008-2012
<i>Project Excite</i> , Earth science education courses for Evanston district 65 3 rd &4 th graders Northwestern University, Center for Talent Development,	2006-2012
<i>Member</i> , NSLS-II beamline development proposal team Title: Frontier Synchrotron Infrared Spectroscopy Under Extreme Conditions Awarded NxtGen beamline development status from DOE in 2012	2009-2011
<i>Member</i> , Mineral and Rock Physics Executive Committee, AGU	2004-2010
<i>Member</i> , Mineral and Rock Physics Graduate Research Award Committee, AGU	2006-2010
<i>Member</i> , Program Committee Annual COMPRES meeting	2008-2010
<i>Chair</i> , Mineral and Rock Physics Graduate Research Award Committee, AGU	2007-2008
<i>Member</i> , Geophysics Review Panel, NSF, Division of Earth Sciences	2007
<i>Assistant Coordinator</i> , NSF-REU Summer Scholar Program, Carnegie Institution	2004-2006
<i>Member</i> , Program Committee, American Geophysical Union	2004-2005

Editorship

<i>Editor</i> , <i>Geophysical Research Letters</i>	2018-2023
<i>Associate Editor</i> , <i>Geophysical Research Letters</i>	2012-2018
<i>Editor</i> , <i>AGU Monograph</i> , "Earth's Deep Water Cycle" (with S. van der Lee)	2006
<i>Guest Editor</i> , <i>Journal of Synchrotron Radiation</i> Structure determination by single-crystal X-ray diffraction at Megabar pressures (with P. Dera and C.T. Prewitt), Vol. 12 2005	2005

Society Membership

AAAS, member since 2019
 American Geophysical Union, member since 1996
 American Physical Society, member since 2019
 Mineralogical Society of America, member since 1996

Advisors

M.S. & Ph.D. University of Colorado at Boulder: Joseph R. Smyth and Hartmut A. Spetzler
Postdoctoral research at Bayerisches Geoinstitut: Stephen J. Mackwell
Postdoctoral research at the Carnegie Earth and Planets Laboratory: Russell J. Hemley

Advisees

Current Graduate and Undergraduate Students:

Tirzah Abbott, Northwestern University, Ph.D. student, *supervisor*

Former Postdocs:

Alison Altman (Ph.D. Berkeley): Northwestern University, 2017-2021. Co-supervised with Danna Freedman, Chemistry. Publications: [110], [116], [119], [122]. Now Assistant Professor at Texas A&M.

Christopher M. Holl (Ph.D. CU-Boulder), Northwestern University, 2006-2009.
Publications: [44], [45], [46], [48], [49], [50], [55].

Xiaobing Liu (Ph.D. Jilin University, PRC): Northwestern University, 2012-2017. Publications: [89], [93], [108]. Now Professor at Qufu Normal University, PRC.

Sylvia-Monique Thomas (Ph.D. GFZ-Potsdam): Northwestern University, 2008-2010.
Publications: [62], [63], [66], [72], [79], [80], [81]. Now Editor at Cactus Communications, Center of Excellence for Earth and Environmental Sciences.

James P.S. Walsh (Ph.D. Manchester): Northwestern University, 2015-2019. Co-supervised with Danna Freedman, Chemistry. Publications: [85], [95], [99], [100], [104], [107], [110], [112], [116], [119]. Now Assistant Professor at University of Massachusetts.

Former Graduate Students:

Hannah Bausch, Northwestern University, Ph.D. 2015, *supervisor*
Publications: [103], [131], [135-submitted]

Now at: Postdoctoral Researcher, Sandia National Laboratories

Yun-Yuan Chang, Northwestern University, Ph.D. 2014, *supervisor*
Publications: [59], [62], [64], [67], [70], [72], [75], [81], [93]
Now at: Assistant Research Fellow, Inst. of Earth Sciences, Academia Sinica, Taiwan

Samantha M. Clarke, Northwestern University, Ph.D. 2018 Chemistry, *co-supervisor*
(with Danna Freedman), Publications: [85], [92], [95], [99], [100], [104], [112], [116]
Now at: Staff Scientist, Lawrence Livermore National Laboratory

Laura Gardner, Northwestern University, Ph.D. student, *supervisor*
Publications: [131], [132], [134], [137-submitted]
Now at: Lecturer, Northwestern University

Anastasia Kantor, Bayerisches Geoinstitut, Ph.D. 2008, *co-supervisor* (with L. Dubrovinsky)
Publications: [16], [24], [47]
Now at: European Synchrotron Radiation Facility, Grenoble, France

Ryan Klein, Northwestern University, Ph.D. 2019 Chemistry, *co-supervisor*
(with Danna Freedman), Publications: [100], [110], [116]
Now at: Researcher-III, National Renewable Energy Laboratory

John Lazarz, Northwestern University, Ph.D. 2018, *supervisor*, Publications: [79], [109]
 Now at: Program Manager of the US ground-based nuclear detonation detection R&D program at the National Nuclear Security Administration.

Xiaoting Lou, Northwestern University, Ph.D. 2013, *co-supervisor* (with S. van der Lee)
 Publications: [70]; Now at: Geophysicist, Chevron

Zhu Mao, Princeton University, Ph.D. 2009 *co-supervisor* (with Tom Duffy)
 Publications: [45], [46], [48], [55], [56], [60], [64], [77]
 Now at: Professor, University of Science and Technology of China (USTC)

Fei Qin, Northwestern University, Visiting Scholar (Chinese Scholarship Program), *supervisor*
 Publications: [87], [91], [106], [123]
 Now at: Associate Professor, China University of Geoscience, Beijing

Alexandra Tamerius, Northwestern University, Ph.D. 2021 Chemistry, *co-supervisor* (with Danna Freedman), Publications: [99], [104], [110], [119], [122]
 Now at: Assistant Professor, Marian University

Joshua Townsend, Northwestern University Presidential Fellow, Ph.D. 2016, *supervisor*
 Publications: [62], [67], [70], [78], [86], [88]
 Now at: Staff Scientist at Sandia National Laboratory

Fei Wang, Northwestern University, Ph.D. 2021, *supervisor*
 Publications: [98], [113], [117], [120], [121]
 Now at: Postdoctoral researcher at Bayerisches Geoinstitut, Bayreuth, Germany

Diane Wetzel, Brown University, Ph.D. 2014, *co-supervisor* (with Alberto Saal)
 Publications: [69]; Now at: Geologist at Anadarko Petroleum Corporation

Michelle Wenz, Northwestern University, Ph.D. 2019, *supervisor*
 Publications: [103], [107]
 Now Dean of Students, Science Dept. Head, Lincoln 6-12th Preparatory School, AZ

Former Undergraduate Students with Publications:

Ari Melinger-Cohen, Northwestern, B.A. Honors Thesis 2013, *co-supervisor* (with C. Bina)

Rebecca Fischer, Northwestern University (Integrated Science Program), B.A. 2009, *supervisor*
 Publications: [49]
 Now at: Clare Boothe Luce Assistant Professor of EPS at Harvard

Ben Haugen, Carnegie Institution REU Program 2008, *co-supervisor* (with A. Goncharov)
 Publications: [51], [54]
 Now at: Sr. Geotechnical Solutions Engineer with Maptek.

Elizabeth Littlefield, Carnegie Institution REU Program 2008, *supervisor*
 Publications: [57]
 Now at: Research Scientist, Great Basin Center for Geothermal Energy

Taymae Mimouni, Northwestern, B.A. Honors Thesis 2024
 Publications: [Effects of hot pressing on iron oxidation states in (Mg,Fe)O, in prep]
 Now at: Research Staff, Corning Inc.

Julia Swanson, Northwestern University (EPS), B.A.
 Publications: [65]
 Now at: Teacher, 7th-grade Science, E Prep Cliffs, Breakthrough Public Schools

Invited Talks

Lawrence Livermore National Laboratory, High Energy Density Science Center, 2/20/25
University of Colorado at Boulder, Renewable & Sustainable Energy Institute, 4/25/24
Northwestern University, Department of Earth and Planetary Sciences, 11/3/23
Chicago/DOE Alliance Center Public Webinar Series, 05/17/23
University of Colorado at Boulder, Department of Geological Sciences, 03/15/23
University of Michigan, Smith Lecture, 02/21/20
Advanced Photon Source, Argonne National Laboratory, APS Colloquium, 01/09/19
Carnegie Institution for Science, Geophysical Laboratory, Mao Symposium, 10/02/18
National Synchrotron Light Source-II, Workshop on Synchrotron Infrared Spectroscopy on Materials in Extreme Environments, 05/23/18
Science Salon and Humanities Hour, WCAS-Northwestern University, 01/27/18
Jackson School of Geosciences, UT-Austin, DeFord Lecture, 9/14/17
Z Fundamental Science Program (ZFSP) Workshop, Sandia National Laboratory, 07/17/17
Université Pierre et Marie Curie, IMPMC, 03/06/2017
University of New Mexico, Department of Earth and Planetary Sciences, 10/28/2016
Center for Interdisciplinary Exploration and Research in Astrophysics, 10/10/2016
NSF Workshop on Emerging Opportunities in Ceramic and Glass Science, 9/13/16
Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, 2/19/2016
University of Western Ontario, Department of Earth Sciences, 2/7/16
Advanced Photon Source, Argonne National Laboratory, 12/9/15
 NNSA/DOE site visit and review of Carnegie/DOE Alliance Center (CDAC)
University of Vienna, Institute for Mineralogy and Crystallography, Austria, 5/22/2015
Goethe University, Institut für Geowissenschaften, Frankfurt, Germany, 4/22/2015
Observatoire de Physique du Globe, University of Clermont-Ferrand, France, 3/6/2015
University College London, Department of Earth Sciences, 2/4/2015
Bayerisches Geoinstitut, University of Bayreuth, Germany, 9/18/2014
Northwestern University, Department of Physics and Astronomy, 11/1/2013
Andor Academy Workshop, NUANCE-Northwestern University, Keynote talk, 10/16/2013
Brown University, Department of Geological Sciences, 10/10/2013
Advanced Photon Source, Argonne National Laboratory, 9/16/2013
 NNSA site visit and review of Carnegie/DOE Alliance Center (CDAC)
David and Lucile Packard Foundation, 25th Anniversary Reunion, Denver, 9/13/2013
Gordon Research Conference on Interior of the Earth, Mount Holyoke College, 6/6/2013
University of Colorado, Department of Physics, 4/8/2013
Cornell University, Department of Earth and Atmospheric Sciences, 5/2/2012
National Synchrotron Light Source, Brookhaven National Laboratory, 11/16/2011
 NSF site visit: Consortium for Materials Properties Research in Earth Sciences (COMPRES)
Advanced Photon Source, Argonne National Laboratory, 10/25/2011
 NNSA site visit and review of Carnegie/DOE Alliance Center (CDAC)
Northern Illinois University, Department of Geology and Environmental Sciences, 4/29/2011
University of Denver, Department of Geography, 11/18/2010
University of Denver, Department of Physics and Astronomy, 11/17/2010
Geophysical Laboratory, Carnegie Institution of Washington, 1/12/2010
Advanced Photon Source, Argonne National Laboratory, High-pressure seminar, 11/10/2009

Washington University, St. Louis, Department of Earth and Planetary Sciences, 10/8/2009
David and Lucile Packard Foundation, Packard Fellows Meeting, Monterey, CA, 9/10/2009
Cooperative Institute for Deep Earth Research, Keynote, Planning Workshop, 5/19/2009
Ehime University, Geodynamics Research Center, Matsuyama, Japan, 3/3/2009
Northwestern University, Department of Physics and Astronomy, 5/23/2008
University of Munich, Department of Earth and Environmental Sciences, Germany, 3/7/2008
University of Neuchâtel, Institute of Geology and Hydrogeology, Switzerland, 3/5/2008
University of Bristol, Department of Earth Sciences, Bristol, U.K., 3/3/2008
North Dakota State University, Department of Geosciences, 1/24/2008
North Dakota State University, Department of Civil Engineering, 1/24/2008
University of North Dakota, Department of Geology and Geological Engineering, 1/23/2008
Winona State University, Department of Geosciences, 1/21/2008
Northwestern University, Department of Materials Science and Engineering, 5/15/2007
West Virginia University, Department of Geology and Geography, 9/10/2007
Rutgers University, Department of Earth and Planetary Sciences, 9/12/2007
Memorial University, Department of Earth and Planetary Sciences, Newfoundland, 9/14/2007
University of Illinois at Urbana-Champaign, Department of Geology, 2/9/2007
University of Chicago, Department of Geophysical Sciences, 10/20/2006
University of Illinois Chicago, Department of Earth and Environmental Sciences, 9/7/2006
University of Minnesota, Department of Geology and Geophysics, 3/2/2006
Virginia Tech, Department of Geological Sciences, 2/23/2006
Yale University, Department of Geology and Geophysics, 1/20/2006
Bayerisches Geoinstitut, University of Bayreuth, Germany, 10/17/2005
Tohoku University, Sendai Japan, Graduate School of Science, 7/22/2005
Northwestern University, Department of Geological Sciences, 4/15/2005
Princeton University, Department of Geosciences, 4/7/2005
University of Wisconsin, Madison, Department of Geology and Geophysics, 3/22/2004
Bayerisches Geoinstitut, Bayreuth, Germany, 6/26/2003
California Institute of Technology, Seismological Laboratory, Pasadena, California, 4/14/2003
Bavarian Academy of Science, Munich, Germany, 11/14/2002
Peking University, Department of Geological Sciences, Beijing, China, 7/16/2001

List of Publications: Steven D. Jacobsen

Updated February 2025

ORCID 0000-0002-9746-958X; Scopus ID 12781882700

Sum of citations: 7200 (Scopus); *h*-index: 49 (Scopus); 54 (Google Scholar)

Papers in high-impact journals, *Science* 4; *Nature* 3; *JACS* 3; *PRL* 3; *Geology* 2

Journal Publications

2026, and articles submitted or in press

[138] Abbott, T.M., C. Akins, M.L. Barsoum, L.L. Gardner, M. Hjelmstad, X. Hu, O.K. Farha, A. Winkelmann, P.R. Heck, T. Sharp, V.P. Dravid and **S.D. Jacobsen** (2026) Revealing multiple ringwoodite and wadsleyite transformation mechanisms in a shock-melt vein using transmission Kikuchi diffraction. *Submitted*

[137] Barsoum, M.L., T.M. Abbott, **S.D. Jacobsen**, O.K. Farha, and V.P. Dravid (2026) Crystal orientation and defect mapping in beam-sensitive zeolites with near-axis transmission Kikuchi diffraction. *ACS Nano Letters*, <https://doi.org/10.1021/acs.nanolett.5c05800>

[136] Bausch, H.J., J.P. Townsend, J.-P. Davis, S. Duwal, C.T. Seagle, T.M. Abbott, A.N. Clark, and **S.D. Jacobsen** (2026) Direct sound speed measurements of MgO along planetary adiabats up to 400 GPa using shock-ramp compression. *Submitted*

[135] T.M. Hutchison, C.P. McGuire, I.K. Ocampo, J.H. Eggert, C. Davis, E.C. Galtier, D. Khagani, N.A. Boiadjieva, B.K. Ofori-Okai, S. Lee, E.R. Sung, E.R. Toro, T. Subak, and **S.D. Jacobsen** (2026) X-ray-pump, speckled optical-probe transient grating spectroscopy at a hard x-ray free electron laser. *Submitted*

2025

[134] Gardner, L.L., W. Abramovich, M. Romanov, S. Flohr, U. Kierdorf, H. Kierdorf, J.D. Almer, **S.D. Jacobsen**, G. Gonzalez Aviles, J.-S. Park, and S.R. Stock (2025) Assessment of diagenesis in archeological human second metacarpal bones using the intensity of the small angle x-ray scattering *D*-period peak. *Journal of the Royal Society Interface* 22, 20240826. <https://doi.org/10.1098/rsif.2024.0826>

[133] Koocher, N.Z., A.B. Altman, R.A. Klein, C.D. Malliakas, **S.D. Jacobsen**, D.E. Freedman and J.M. Rondinelli (2025) Tunable negative thermal expansion in layered perovskite Ba₃Zr₂S₇. *Inorganic Chemistry* 64, 10761-10771. <https://doi.org/10.1021/acs.inorgchem.5c00314>

[132] Ni, P., S.B. Shirey, M.J. Walter, J. Czas, D. Novella, F. Nestola, N. Kueter, E.M. Smith, T. Stachel, D.G. Pearson, A. Steele, L.L. Gardner, **S.D. Jacobsen**, B. Harte, J.W. Harris and A. Shahar (2025) Onset of slab mantle melting in Earth's lower mantle: evidence from ferropericlase in superdeep diamonds. *Science Advances* 11, 9206. <https://doi.org/10.1126/sciadv.adt9106>

[131] Wang, F., H.J. Bausch, L.L. Gardner, D. Zhang, K. Armstrong, A.S. Bell, J. Zhao, E.E. Alp, and **S.D. Jacobsen** (2025) Thermoelastic properties of iron-rich ringwoodite and the deep mantle aerotherm of Mars. *Geophysical Research Letters* 52, e2024GL109666 <https://doi.org/10.1029/2024GL109666>

2024

- [130] Macias, A.L., **S.D. Jacobsen**, and Loria A.F.R. (2024) Electrodeposition of calcareous cement from seawater in marine silica sands. *Communications Earth & Environment* 5, 442. <https://doi.org/10.1038/s43247-024-01604-3>
- [129] Qin, F., F. Wang, J.R. Smyth, D. Zhang, J. Xu, and **S.D. Jacobsen** (2024) Thermoelastic properties of Fe³⁺-rich jeffbenite and application to superdeep diamond barometry. *Geophysical Research Letters* 51, e2023GL106908 <https://doi.org/10.1029/2023GL106908>

2023

- [128] Clark, A.N., J.M.D. Lane, J.P. Davis, A.R. Sarafian, K.R. Cochrane, J.P. Townsend and **S.D. Jacobsen** (2023). Shock-ramp of SiO₂ melt. *AIP Conference Proceedings* 2844, 330002. <https://doi.org/10.1063/12.0020419>
- [127] Lorenzon, S., M. Wenz, P. Nimis, **S.D. Jacobsen**, L. Pasqualetto, M.G. Pamato, D. Novella, D. Zhang, C. Anzolini, M. Regier, T. Stachel, D.G. Pearson, J.W. Harris and F. Nestola (2023) Dual origin of ferropericlase inclusions within super-deep diamonds. *Earth and Planetary Science Letters* 608, 118081. <https://doi.org/10.1016/j.epsl.2023.118081>
- [126] Nestola, F. M.E. Regier, R.W. Luth, D.G. Pearson, T. Stachel, C.A. McCammon, M.D. Wenz, **S.D. Jacobsen**, C. Anzolini, L. Bindi, and J.W. Harris (2023) Extreme redox variations in a superdeep diamond from a subducted slab. *Nature* 613, 85-89. <https://doi.org/10.1038/s41586-022-05392-8>
- [125] Qin, F., Y. Wu, S. Xue, D. Zhang, X. Wu, and **S.D. Jacobsen**. Crystal structure of calcium-ferrite type NaAlSiO₄ up to 45 GPa. *American Mineralogist* 108, 2331-2337. <https://doi.org/10.2138/am-2022-8432>
- [124] Wang, F. E.C. Thompson, D. Zhang, J. Xu, E.E. Alp and **S.D. Jacobsen** (2023) Hydrous wadsleyite crystal structure up to 32 GPa. *American Mineralogist* 108, 1948-1956. <https://doi.org/10.2138/am-2022-8380>

2022

- [123] Diamond M.R., G. Shen, D.Y. Popov, C. Park, **S.D. Jacobsen** and R. Jeanloz (2022) Electron density change across the pressure-induced iron spin transition. *Physical Review Letters* 129, 025701. <https://doi.org/10.1103/PhysRevLett.129.025701>
- [122] Lorenzon, S., D. Novella, P. Nimis, **S.D. Jacobsen**, E. Thomassot, M.G. Pamato, L. Prosperi, A. Lorenzetti, M. Alvaro, F. Brenker, F. Salvadego, and F. Nestola (2022) Ringwoodite and zirconia inclusions indicate downward travel of super-deep diamond. *Geology* 50, 996-1000. <https://doi.org/10.1130/G50111.1>
- [121] Smyth, J.R., F. Wang, E.E. Alp, A.S. Bell, E. Posner, and **S.D. Jacobsen** (2022) Ferromagnesian jeffbenite synthesized at 15 GPa and 1200°C. *American Mineralogist* 107, 405-412. <https://doi.org/10.2138/am-2021-7852>
- [120] Tamerius, A.D., A.B. Altman, M.J. Waters, E.A. Riesel, C.D. Malliakas, M.L. Whitaker, T. Yu, G. Fabbris, Y. Meng, D. Haskel, Y. Wang, **S.D. Jacobsen**, J.M. Rondinelli and D.E. Freedman (2022) Synthesis of the candidate topological compound Ni₃Pb₂. *Journal of the American Chemical Society* 144, 11943-11948. <https://doi.org/10.1021/jacs.2c03485>

2021

[119] Shimizu, K., C.M.O'D. Alexander, E.H. Hauri, A.R. Sarafian, L.R. Nittler, J. Wang, **S.D. Jacobsen**, and R.A. Mendybaev (2021). Highly volatile element (H, C, F, Cl, S) abundances and H isotopic compositions in chondrules from carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta* 301, 230-258.

<https://doi.org/10.1016/j.gca.2021.03.005>

[118] Wang, F., E.C. Thompson, D. Zhang, E.E. Alp, J. Zhao, J.R. Smyth, and **S.D. Jacobsen** (2021) High-pressure crystal structure and equation of state of ferromagnesian jeffbenite: implications for stability in the transition zone and uppermost lower mantle. *Contributions to Mineralogy and Petrology* 176, 93. <https://doi.org/10.1007/s00410-021-01850-0>

2020

[117] Altman, A., A. Tamerius, N. Koocher, Y. Meng, C. Pickard, J.P.S. Walsh, J. Rondinelli, **S.D. Jacobsen** and D. Freedman (2021) Computationally directed discovery of MoBi₂. *Journal of the American Chemical Society* 143, 214-222.

<https://doi.org/10.1021/jacs.0c09419>

[116] Klein, R.A., J.P.S. Walsh, S.M. Clarke, Z. Liu, E.E. Alp, W. Bi, Y. Meng, A.B. Altman, P. Chow, Y. Xiao, M.R. Norman, J.M. Rondinelli, **S.D. Jacobsen**, D. Puggioni and D.E. Freedman (2020) Pressure-induced collapse of magnetic order in jarosite. *Physical Review Letters* 125, 077202. <https://doi.org/10.1103/PhysRevLett.125.077202>

[115] Prichard, M., R. Allen, T. Becker, M. Behn, E.E. Brodsky, R. Bürgmann, C. Ebinger, J.T. Freymueller, M. Gerstenberger, B. Haines, Y. Kaneko, **S.D. Jacobsen**, N. Lindsey, J.J. McGuire, M. Page, S. Ruiz, M. Tolstoy, L. Wallace, W.R. Walter, W. Wilcock and H. Vincent (2020) New opportunities to study earthquake precursors. *Seismological Research Letters* 91, 2444-2447. <https://doi.org/10.1785/0220200089>

[114] Whitney, D.L. **S.D. Jacobsen**, and G. Gehrels (2020) All hands on deck: Implications of the recent NSF Earth Sciences decadal report for the mineral sciences. *Elements* 16, 228-230. <https://doi.org/10.2138/gselements.16.4.228>

2019

[113] Anzolini, C., F. Wang, G.A. Harris, A.J. Locock, D. Zhang, F. Nestola, L. Peruzzo, **S.D. Jacobsen**, and D.G. Pearson (2019) Nixonite, Na₂Ti₆O₁₃, a new mineral from a metasomatized mantle garnet pyroxenite from the western Rae Craton, Darby kimberlite field, Canada. *American Mineralogist* 104, 1336-1344.

[112] Clarke, S.M., K.M. Powderly, J.P.S. Walsh, T. Yu, Y. Wang, Y. Meng, **S.D. Jacobsen**, and D.E. Freedman (2019) Controlling dimensionality in the Ni-Bi system with pressure. *Chemistry of Materials* 31, 955-959.

[111] Dalou, C., M.M. Hirschmann, **S.D. Jacobsen**, and C. Le Losq (2019) Raman spectroscopy study of C-O-H-N speciation in reduced basaltic glasses: implications for reduced planetary mantles. *Geochimica et Cosmochimica Acta* 265, 32-47.

[110] Klein, R.A., A.B. Altman, R.J. Saballo, J.P.S. Walsh, A.D. Tamerius, Y. Meng, D. Puggioni, **S.D. Jacobsen**, J.M. Rondinelli, and D.E. Freedman (2019) High-pressure synthesis of the BiVO₃ perovskite. *Physical Review Materials* 3, 064411.

[109] Lazarz, J.D., P. Dera, Y. Hu, Y. Meng, C.R. Bina, and **S.D. Jacobsen** (2019) High-pressure phase transitions of clinoenstatite. *American Mineralogist* 104, 897-904.

[108] Liu, X., X. Chen, X. Jia, H.A. Ma, D.J. Singh, R. Stern, J. Wu, S. Petitgirard, C.R. Bina, and **S.D. Jacobsen** (2019) Boron-oxygen complex yields n-type surface layer in semiconducting diamond. *Proceedings of the National Academy of Sciences USA* 116, 7703-7711.

[107] Meyer, N.A., M.D. Wenz, J.P.S. Walsh, **S.D. Jacobsen**, A.J. Locock, and J.W. Harris (2019) Goldschmidtite, $(\text{K,REE,Sr})(\text{Nb,Cr})\text{O}_3$: a new perovskite supergroup mineral found in diamond from Koffiefontein, South Africa. *American Mineralogist* 104, 1345-1350.

[106] Qin, F., X. Wu, S. Qin, D. Zhang, V.B. Prakapenka, and **S.D. Jacobsen** (2019) Pressure-induced dehydration of diopside: a single-crystal X-ray diffraction and Raman spectroscopic study. *Comptes Rendus Geoscience* 351, 121-128.

[105] Shirey, S., K. Smit, D. Pearson, D., M. Walter, S. Aulbach, F. Brenker, . . . Y. Weiss (2019). Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record. In B. Orcutt, I. Daniel, & R. Dasgupta (Eds.), *Deep Carbon: Past to Present* (pp. 89-128). Cambridge: Cambridge University Press.

[104] Walsh, J.P.S., S.M. Clarke, D. Puggioni, A.D. Tamerius, Y. Meng, J.M. Rondinelli, **S.D. Jacobsen**, and D.E. Freedman (2019) MnBi_2 : A metastable high-pressure phase in the Mn-Bi system. *Chemistry of Materials* 31, 3083-3088.

[103] Wenz, M.D., **S.D. Jacobsen**, D. Zhang, M. Regier, H.J. Bausch, P. Dera, M. Rivers, P. Eng, S.B. Shirey, and D.G. Pearson (2019) Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography, and diffraction. *Journal of Synchrotron Radiation* 26, 1763-1768.

[102] Zhang, L. J.R. Smyth, T. Kawazoe, **S.D. Jacobsen**, J. Niu, and X. He. Stability, composition, and crystal structure of Fe-bearing phase E in the transition zone (2019) *American Mineralogist* 104, 1620-1624.

2018

[101] Amsler, M., V.I. Hegde, **S.D. Jacobsen**, and C. Wolverton (2018) Exploring the high-pressure materials genome. *Physical Review X* 8, 041021.

[100] Klein, R.A., J.P.S. Walsh, S.M. Clarke, Y. Guo, W. Bi, G. Fabbris, Y. Meng, D. Haskel, E.E. Alp, R.P. Van Duyne, **S.D. Jacobsen**, and D.E. Freedman (2018) Impact of pressure on magnetic order in jarosite. *Journal of the American Chemical Society* 140, 12001-12009.

[99] Tamerius, A.D., S.M. Clarke, M. Gu, J.P.S. Walsh, M. Esters, Y. Meng, C.H. Hendon, J.M. Rondinelli, **S.D. Jacobsen**, and D.E. Freedman (2018) Discovery of Cu_3Pb . *Angewandte Chemie International Edition* 57, 12809-12813.

[98] Wang, F., M. Barklage, X. Lou, S. van der Lee, C.R. Bina, and **S.D. Jacobsen** (2018) HyMaTZ: a Python program for modelling seismic velocities in hydrous regions of the mantle transition zone. *Geochemistry, Geophysics, Geosystems* 19, 2308-2324.

[97] Zhang, L. J.R. Smyth, T. Kawazoe, **S.D. Jacobsen**, and S. Qin (2018) Transition metals in the transition zone: partitioning of Ni, Co, and Zn between olivine, wadsleyite, ringwoodite, and clinoenstatite. *Contributions to Mineralogy and Petrology* 173, 52.

2017

- [96] Childress, L.B. and **S.D. Jacobsen** (2017) High-pressure high-temperature Raman spectroscopy of kerogen: relevance to subducted organic carbon. *American Mineralogist* 102, 391-403.
- [95] Clarke, S.M., M. Amsler, J.P.S. Walsh, T. Yu, Y. Wang, Y. Meng, **S.D. Jacobsen**, C. Wolverton, and D.E. Freedman (2017) Creating binary Cu-Bi compounds via high-pressure synthesis: A combined experimental and theoretical study. *Chemistry of Materials* 29, 5276-5285.
- [94] Faber, K.T. et al. [43 co-authors] (2017) The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop. *Journal of the American Ceramic Society*, 1-27, doi: 10.1111/jace.14881.
- [93] Liu, X., Y.Y. Chang, S.N. Tkachev, C.R. Bina, and **S.D. Jacobsen** (2017) Elastic and mechanical softening in boron-doped diamond. *Scientific Reports* 7, 42921.
- [92] Powderly, K.M., S.M. Clarke, M. Amsler, C. Wolverton, C.D. Malliakas, Y. Meng, **S.D. Jacobsen**, and D.E. Freedman (2017) High-pressure discovery of β -NiBi. *Chemical Communications* 53, 11241-11244.
- [91] Qin, F., X. Wu, D. Zhang, S. Qin, and **S.D. Jacobsen** (2017) Thermal equation of state of natural Ti-bearing clinohumite. *Journal of Geophysical Research* 122, 8943-8951.

2016

- [90] Clark, A.N., C.E. Lesher, **S.D. Jacobsen**, and Y. Wang (2016) Anomalous density and elastic properties of basalt at high pressure: reevaluating the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle. *Journal of Geophysical Research* 121, 4232-4248.
- [89] Liu, X., X. Chen, H.A. Ma, X. Jia, J. Wu, T. Yu, Y. Wang, J. Guo, S. Petitgirard, C.R. Bina, and **S.D. Jacobsen** (2016) Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C₂-BN composite. *Scientific Reports* 6, 30518.
- [88] Palot, M., **S.D. Jacobsen**, J.P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J.W. Harris, T. Stachel, C.A. McCammon, and D.G. Pearson (2016) Evidence for H₂O-bearing fluids in the lower mantle from diamond inclusion. *Lithos* 265, 237-243.
- [87] Qin, F., X. Wu, Y. Wang, D. Fan, S. Qin, K. Yang, and **S.D. Jacobsen** (2016) High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa. *Physics and Chemistry of Minerals* 43, 649-659.
- [86] Townsend, J.P., J. Tsuchiya, C.R. Bina, and **S.D. Jacobsen** (2016) Water partitioning between bridgmanite and postperovskite in the lowermost mantle. *Earth and Planetary Science Letters* 454, 20-27.
- [85] Walsh, J.P.S., S.M. Clarke, Y. Meng, **S.D. Jacobsen**, and D.E. Freedman (2016) Discovery of FeBi₂. *ACS Central Science* 2, 867-871.
- [84] Yang, J., J.F. Lin, **S.D. Jacobsen**, S.N. Tkachev, and V.B. Prakapenka (2016) Elasticity of ferropericlase and seismic heterogeneity in the Earth's lower mantle. *Journal of Geophysical Research* 121, 8488-8500.
- [83] Zhang, L., J.R. Smyth, J. Allaz, T. Kawazoe, **S.D. Jacobsen**, and Z. Jin (2016) Transition metals in the transition zone: crystal chemistry of minor element substitution in wadsleyite. *American Mineralogist* 101, 2232-2330.

2015

[82] Armstrong, L.S., M.M. Hirschmann, B.D. Stanley, E.G. Falksen, and **S.D. Jacobsen** (2015) Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. *Geochimica et Cosmochimica Acta* 171, 283-302.

[81] Chang, Y.Y., **S.D. Jacobsen**, C.R. Bina, S.M. Thomas, J.R. Smyth, D.J. Frost, T.B. Ballaran, C.A. McCammon, E.H. Hauri, T. Inoue, H. Yurimoto, Y. Meng, and P. Dera (2015) Comparative compressibility of hydrous wadsleyite and ringwoodite: Effect of H₂O and implications for detecting water in the transition zone. *Journal of Geophysical Research* 120, doi: 10.1002/2015JB012123.

[80] Thomas, S.M., **S.D. Jacobsen**, C.R. Bina, P. Reichart, M. Moser, E.H. Hauri, M. Koch-Müller, J.R. Smyth, and G. Dollinger (2015) Quantification of water in hydrous ringwoodite. *Frontiers in Earth Science* 2, 38, doi: 10.3389/feart.2014.00038.

[79] Thomas, S.M., K. Wilson, M. Koch-Müller, E.H. Hauri, C. McCammon, **S.D. Jacobsen**, J. Lazarz, D. Rhede, M. Ren, N. Blair, and S. Lenz (2015) Quantification of water in majoritic garnet. *American Mineralogist* 100, 1084-1092.

[78] Townsend, J.P., J. Tsuchiya, C.R. Bina, and **S.D. Jacobsen** (2015) First-principles investigation of hydrous post-perovskite. *Physics of the Earth and Planetary Interiors* 244, 42-48.

[77] Ye, Y., **S.D. Jacobsen**, Z. Mao, T.S. Duffy, S.M. Hirner, and J.R. Smyth (2015) Crystal structure, thermal expansivity and elasticity of OH-chondrodite: Trends among dense hydrous magnesium silicates. *Contributions to Mineralogy and Petrology* 169, 43.

2014

[76] Clark, A.N., C.E. Lesher, **S.D. Jacobsen**, and S. Sen (2014). Mechanisms of anomalous compressibility of vitreous silica. *Physical Review B* 90, 174110.

[75] Chang, Y.Y., **S.D. Jacobsen**, M. Kimura, T. Irifune, and I. Ohno (2014) Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods. *Physics of the Earth and Planetary Interiors* 228, 47-55.

[74] Gatta, G.D., **S.D. Jacobsen**, P. Vignola, G.J. McIntyre, G. Guastella, and L.F. Abate (2014) Single-crystal neutron diffraction and Raman spectroscopic study of hydroxylherderite, CaBePO₄(OH,F). *Mineralogical Magazine* 78, 723-737.

[73] Schmandt, B., **S.D. Jacobsen**, T.W. Becker, Z. Liu, and K.G. Dueker (2014) Dehydration melting at the top of the lower mantle. *Science* 344, 1265-1268.

2013

[72] Chang, Y.Y., **S.D. Jacobsen**, J.F. Lin, C.R. Bina, S.M. Thomas, J. Wu, G. Shen, Y. Xiao, P. Chow, D.J. Frost, C.A. McCammon, and P. Dera (2013) Spin transition of Fe³⁺ in Al-bearing phase D: an alternative explanation for small-scale seismic scatterers in the mid-lower mantle. *Earth and Planetary Science Letters* 382, 1-9.

[71] Reichmann, H.J., **S.D. Jacobsen**, and T.B. Ballaran (2013) Elasticity of franklinite and trends for transition-metal oxide spinels. *American Mineralogist* 98, 601-608.

[70] Townsend, J.P., Y.Y. Chang, X. Lou, M. Merino, S.J. Kirklin, J.W. Doak, A. Issa, C. Wolverton, S.N. Tkachev, P. Dera, and **S.D. Jacobsen** (2013) Stability and equation of state of post-aragonite BaCO₃. *Physics and Chemistry of Minerals* 40, 447-453.

[69] Wetzel, D.T., M.J. Rutherford, **S.D. Jacobsen**, E.H. Hauri, and A.E. Saal (2013) Degassing of reduced carbon from planetary basalts. *Proceedings of the National Academy of Sciences USA* 110, 8010-8013.

[68] Ye, Y., J.R. Smyth, **S.D. Jacobsen**, and C. Goujon (2013) Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth's interior. *Contributions to Mineralogy and Petrology* 165, 563-574.

[67] Ye, Y., J.R. Smyth, **S.D. Jacobsen**, W.R. Panero, D.A. Brown, T. Katsura, Y.Y. Chang, J.P. Townsend, P. Dera, S. Tkachev, C. Unterborn, Z. Liu, and C. Goujon (2013) Crystal structure, Raman and FTIR spectroscopy, and equations of state of OH-bearing $MgSiO_3$ akimotoite. *Contributions to Mineralogy and Petrology* 166, 1375-1388.

2012

[66] Adams, K.A., **S.D. Jacobsen**, Z. Liu, S.M. Thomas, M. Somayazulu, and D.M. Jurdy (2012) Optical reflectivity of solid and liquid methane: application to spectroscopy of Titan's hydrocarbon lakes. *Geophysical Research Letters* 39, L04309.

[65] Gatta, G.D., G.J. McIntyre, J.G. Swanson, and **S.D. Jacobsen** (2012) Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, $Ca_3Si(OH)_6(CO_3)(SO_4)12H_2O$. *American Mineralogist* 97, 1060-1069.

[64] Mao, Z., J.F. Lin, **S.D. Jacobsen**, T.S. Duffy, Y.Y. Chang, J.R. Smyth, D.J. Frost, E.H. Hauri, and V.B. Prakapenka (2012) Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. *Earth and Planetary Science Letters* 331-332, 112-119.

[63] Thomas, S.M., C.R. Bina, **S.D. Jacobsen**, and A.F. Goncharov (2012) Radiative heat transfer in a hydrous mantle transition zone. *Earth and Planetary Science Letters* 357-358, 130-136.

[62] Ye, Y., D.A. Brown, J.R. Smyth, W.R. Panero, **S.D. Jacobsen**, Y.Y. Chang, J.P. Townsend, S.M. Thomas, E.H. Hauri, P. Dera, and D.J. Frost (2012) Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H_2O . *American Mineralogist* 97, 573-582.

2011

[61] Longo, M., C.A. McCammon, and **S.D. Jacobsen** (2011) Microanalysis of the iron oxidation state in $(Mg,Fe)O$ and application to the study of microscale processes. *Contributions to Mineralogy and Petrology* 162, 1249-1257.

[60] Mao, Z., **S.D. Jacobsen**, D.J. Frost, C.A. McCammon, E.H. Hauri, and T.S. Duffy (2011) Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. *American Mineralogist* 96, 1606-1612.

[59] Zhang, J.S., J.D. Bass, T. Taniguchi, A.F. Goncharov, Y.Y. Chang, and **S.D. Jacobsen** (2011) Elasticity of cubic boron nitride under ambient conditions. *Journal of Applied Physics* 109, 063521.

2010

[58] Carpenter, M.A., S.V. Sinogeikin, J.D. Bass, D. Lakshmitov, and **S.D. Jacobsen** (2010) Elastic relaxations associated with the $Pm3m - R3c$ transition in $LaAlO_3$ I: single crystal elastic constants at room temperature. *Journal of Physics: Condensed Matter* 22, 035403.

[57] **Jacobsen, S.D.**, Z. Liu, T.B. Ballaran, E.F. Littlefield, L. Ehm, and R.J. Hemley (2010) Effect of H₂O on upper mantle phase transitions in MgSiO₃: is the depth of the seismic X-discontinuity an indicator of mantle water content? *Physics of the Earth and Planetary Interiors* 183, 234-244.

[56] Lin, J.F., Z. Mao, I. Jarrige, Y. Xiao, P. Chow, T. Okuchi, N. Hiraoka, and **S.D. Jacobsen** (2010) Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures. *American Mineralogist* 95, 1125-1131.

[55] Mao, Z., **S.D. Jacobsen**, F. Jiang, J.R. Smyth, C.M. Holl, D.J. Frost, and T.S. Duffy (2010) Velocity crossover between hydrous and anhydrous forsterite at high pressures. *Earth and Planetary Science Letters* 293, 250-258.

2009

[54] Goncharov, A.F., P. Beck, V.V. Struzhkin, B.D. Haugen, and **S.D. Jacobsen** (2009) Thermal conductivity of lower mantle minerals. *Physics of the Earth and Planetary Interiors* 174, 24-32.

[53] Lin, J.F., A.G. Gavriliuk, W. Sturhahn, **S.D. Jacobsen**, J. Zhao, M. Lerche, and M. Hu (2009) Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures. *American Mineralogist* 94, 594-599.

2008

[52] Crowhurst, J.C., J.M. Brown, A.F. Goncharov, and **S.D. Jacobsen** (2008) Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. *Science* 319, 451-453.

[51] Goncharov, A.F., B.D. Haugen, V.V. Struzhkin, P. Beck, and **S.D. Jacobsen** (2008) Radiative conductivity in the Earth's lower mantle. *Nature* 465, 231-234.

[50] Holl, C.M., J.R. Smyth, **S.D. Jacobsen**, and D.J. Frost (2008) Effect of water on the structure and compressibility of wadsleyite, β -(Mg₂SiO₄). *Am. Mineralogist* 93, 598-607.

[49] **Jacobsen, S.D.**, C.M. Holl, K.A. Adams, R.A. Fischer, E.S. Martin, C.R. Bina, J.F. Lin, V.B. Prakapenka, A. Kubo, and P. Dera (2008) Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. *American Mineralogist* 93, 1823-1828.

[48] **Jacobsen, S.D.**, F. Jiang, Z. Mao, T.S. Duffy, J.R. Smyth, C.M. Holl, and D.J. Frost (2008) Effects of hydration on the elastic properties of olivine. *Geophysical Research Letters* 35, L14303.

[47] Kantor, A., I. Kantor, A. Kurnosov, L. Dubrovinksy, M. Krisch, A. Bossak, and **S. Jacobsen** (2008) Anelasticity of Fe_xO at high pressure. *Applied Physics Letters* 93, 034106.

[46] Mao, Z., **S.D. Jacobsen**, F. Jiang, J.R. Smyth, C.M. Holl, and T.S. Duffy (2008) Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth's transition zone. *Geophysical Research Letters* 35, L21305.

[45] Mao, Z., **S.D. Jacobsen**, F. Jiang, J.R. Smyth, C.M. Holl, and T.S. Duffy (2008) Single-crystal elasticity of wadsleyites, β -Mg₂SiO₄, containing 0.37-1.66 wt% water. *Earth and Planetary Science Letters* 268, 540-549.

[44] Rivers, M., V.B. Prakapenka, A. Kubo, C. Pullins, C.M. Holl, and **S.D. Jacobsen** (2008) The COMPRES/GSECARS gas loading system for diamond anvil cells at the Advanced Photon Source. *High-Pressure Research* 28, 273-292.

[43] Sun, T., P.B. Allen, D.G. Stahnke, **S.D. Jacobsen**, and C.C. Homes (2008) Infrared properties of ferropericlase $(\text{Mg}_{1-x}\text{Fe}_x)\text{O}$: Experiment and theory. *Physical Review B* 77, 134303.

2007

[42] Angel, R.J., M. Bujak, J. Zhao, G.D. Gatta, and **S.D. Jacobsen** (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. *Journal of Applied Crystallography* 40, 26-32.

[41] Lin, J.F., **S.D. Jacobsen**, and R.M. Wentzcovitch (2007) Electronic spin transition of iron in the Earth's deep mantle. *Eos*, Vol 88, No 1, January 9 2007 issue, pp 13,17-18.

[40] Lin, J.F., Vankó, G., **S.D. Jacobsen**, V. Iota, V.V. Struzhkin, V.B. Prakapenka, A. Kuznetsov, and C.S. Yoo (2007) Spin transition zone in Earth's lower mantle. *Science* 317, 1740-1743.

[39] Litasov, K.D., E. Ohtani, H. Kagi, **S.D. Jacobsen**, S. Ghosh (2007) Temperature dependence and mechanisms of hydrogen incorporation in olivine at 12.5-14.0 GPa. *Geophysical Research Letters* 34, L16314.

2006

[38] Demouchy, S., **S.D. Jacobsen**, F. Gaillard, and C.R. Stern (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. *Geology* 34, 429-432.

[37] Goncharov, A.F., V.V. Struzhkin, and **S.D. Jacobsen** (2006) Reduced radiative conductivity of low-spin $(\text{Mg},\text{Fe})\text{O}$ in the lower mantle. *Science* 312, 1205-1208.

[36] Jackson, J.M., S.V. Sinogeikin, **S.D. Jacobsen**, H.J. Reichmann, S.J. Mackwell, and J.D. Bass (2006) Single-crystal elasticity and sound velocities of $(\text{Mg}_{0.94}\text{Fe}_{0.06})\text{O}$ ferropericlase to 20 GPa. *Journal of Geophysical Research* 111, B09203.

[35] **Jacobsen, S.D.** (2006) Effect of water on the equation of state of nominally anhydrous minerals. In: H. Keppler and J.R. Smyth (Eds.) Water in Nominally anhydrous minerals. *Reviews in Mineralogy and Geochemistry* 62, 321-342.

[34] **Jacobsen, S.D.** and J.R. Smyth (2006) Effect of water on the sound velocities of ringwoodite in the transition zone. In: S.D. Jacobsen and S. van der Lee (Eds.) *Earth's Deep Water Cycle*, American Geophysical Union, Geophysical Monograph 168, 131-145.

[33] Lin, J.F., A.G. Gavriliuk, V.V. Struzhkin, **S.D. Jacobsen**, W. Sturhahn, M.Y. Hu, P. Chow, C.S. Yoo (2006) Pressure-induced electronic spin transition of iron in magnesiowüstite- $(\text{Mg},\text{Fe})\text{O}$. *Physical Review B* 73, 113107.

[32] Lin, J.F., **S.D. Jacobsen**, W. Sturhahn, J.M. Jackson, J. Zhao, and C.-S. Yoo (2006) Sound velocities of ferropericlase in the Earth's lower mantle. *Geophysical Research Letters* 33, L22304.

[31] Reichmann, H.J. and **S.D. Jacobsen** (2006) Sound velocities and elastic constants of ZnAl_2O_4 spinel and implications for spinel-elasticity systematics. *American Mineralogist*, 91 1049-1054.

[30] Schlegel, M.L., K.L. Nagy, P. Fenter, L. Cheng, N.C. Sturchio, **S.D. Jacobsen** (2006) Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. *Geochimica et Cosmochimica Acta* 70, 3549-3565.

[29] Smyth, J.R. and **S.D. Jacobsen** (2006) Nominally anhydrous minerals and Earth's deep water cycle. In: S.D. Jacobsen and S. van der Lee (Eds.) *Earth's Deep Water Cycle*, American Geophysical Union, Geophysical Monograph 168, 1-11.

[28] Vanpeteghem, C.B., R.J. Angel, N.L. Ross, **S.D. Jacobsen**, D.P. Dobson, K.D. Litasov, and E. Ohtani (2006) Al, Fe substitution in $MgSiO_3$ perovskite structure: a single-crystal X-ray diffraction study. *Physics of the Earth and Planetary Interiors* 155, 96-103.

2005

[27] Dubrovinskaia, N., L. Dubrovinsky, F. Langenhorst, **S.D. Jacobsen**, and C. Liebske (2005) Nanocrystalline diamond synthesized from C_{60} . *Diamond and Related Materials* 14, 16-22.

[26] **Jacobsen, S.D.**, S. Demouchy, D.J. Frost, T.B. Ballaran and J. Kung (2005) Systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage in Earth's interior. *American Mineralogist* 90, 61-70.

[25] **Jacobsen, S.D.**, J.F. Lin, R.J. Angel, G. Shen, V.B. Prakapenka, P. Dera, H.-K. Mao, and R.J. Hemley (2005) Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. *Journal of Synchrotron Radiation* 12, 577-583.

[24] **Jacobsen, S.D.**, H.J. Reichmann, A. Kantor, and H. Spetzler (2005) A gigahertz ultrasonic interferometer for the diamond-anvil cell and high-pressure elasticity of some iron-oxide minerals. In: J. Chen et al. (Eds.) *Advances in High-Pressure Technology for Geophysical Applications*, Elsevier, Amsterdam, pp. 25-48.

[23] Lin, J.F., V.V. Struzhkin, **S.D. Jacobsen**, M.Y. Hu, P. Chow, J. Kung, H. Liu, H.K. Mao, R.J. Hemley (2005) Spin transition of iron in magnesiowüstite in the Earth's lower mantle. *Nature* 436, 377-380.

[22] Lin, J.F., V.V. Struzhkin, **S.D. Jacobsen**, G. Shen, V. Prakapenka, H.K. Mao, R.J. Hemley (2005) X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior. *Journal of Synchrotron Radiation* 12, 637-641.

[21] Zotov, N., W. Kockelmann, **S.D. Jacobsen**, I. Mitov, D. Paneva, R.D. Vassileva and I. Bonev (2005) Structure and cation ordering in manganilvaite: a combined X-ray diffraction, neutron diffraction and Mössbauer study. *Canadian Mineralogist* 43, 1043-1053.

2004

[20] Bromiley, G.D., H. Kepler, C. McCammon, F.A. Bromiley and **S.D. Jacobsen** (2004) Hydrogen solubility and speciation in natural, gem-quality chromain diopside. *American Mineralogist* 89, 941-949.

[19] Dobson, D.P. and **S.D. Jacobsen** (2004) The flux growth of magnesium silicate perovskite single crystals. *American Mineralogist* 89, 807-811.

[18] **Jacobsen, S.D.**, J.R. Smyth, H.A. Spetzler, C.M. Holl, and D.J. Frost (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. *Physics of the Earth and Planetary Interiors* 143-144, 47-56.

[17] **Jacobsen, S.D.**, H.A. Spetzler, H.J. Reichmann and J.R. Smyth (2004) Shear waves in the diamond-anvil cell reveal pressure-induced instability in $(Mg,Fe)O$. *Proceedings of the National Academy of Sciences USA* 101, 5867-5871.

[16] Kantor, A.P., **S.D. Jacobsen**, Y.K. Kantor, L.S. Dubrovinsky, C.A. McCammon, H.J. Reichmann and I.N. Goncharenko (2004) Pressure-induced magnetization in FeO: evidence from elasticity and Mössbauer spectroscopy. *Physical Review Letters* 93, 215502.

[15] Reichmann, H.J. and **S. D. Jacobsen** (2004) High-pressure elasticity of a natural magnetite crystal. *American Mineralogist* 89, 1061-1066.

[14] Smyth, J.R., C.M. Holl, D.J. Frost and **S.D. Jacobsen** (2004) High-pressure crystal chemistry of hydrous ringwoodite and water in the Earth's interior. *Physics of the Earth and Planetary Interiors* 143-144, 271-278.

[13] Xu, J., Y. Ding, **S.D. Jacobsen**, H.K. Mao, R.J. Hemley, J. Zhang, J. Qian, C. Pantea, S.C. Vogel, D.J. Williams, and Y. Zhao (2004) Powder neutron diffraction of wüstite ($\text{Fe}_{0.93}\text{O}$) to 12 GPa using large moissanite anvils. *High-Pressure Research* 24, 247-253.

2003

[12] **Jacobsen, S.D.**, J.R. Smyth, and R.J. Swope (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, $\text{Ca}_3\text{Si}(\text{OH})_6(\text{CO}_3)(\text{SO}_4) \cdot 12 \text{ H}_2\text{O}$. *Physics and Chemistry of Minerals* 30, 321-329.

[11] Smyth, J.R., C.M. Holl, D.J. Frost, **S.D. Jacobsen**, F. Langenhorst, and C.A. McCammon (2003) Structural systematics of hydrous ringwoodite and water in Earth's interior. *American Mineralogist* 88, 1402-1407.

2002

[10] **Jacobsen S.D.**, H.J. Reichmann, H.A. Spetzler, S.J. Mackwell, J.R. Smyth, R.J. Angel, R.J., and C.A. McCammon (2002) Structure and elasticity of single-crystal $(\text{Mg},\text{Fe})\text{O}$ and a new method of generating shear waves for gigahertz ultrasonic interferometry, *Journal of Geophysical Research* 107(B2), 2037, doi: 10.1029/2001JB000490.

[9] **Jacobsen S.D.**, H.A. Spetzler, H.J. Reichmann, J.R. Smyth, S.J. Mackwell, R.J. Angel, and W.A. Bassett (2002) GHz-ultrasonic interferometry at high P and T : New tools for a thermodynamic equation of state. *Journal of Physics: Condensed Matter* 14, 11525-11530.

2000

[8] Holl, C.M., J.R. Smyth, H.M. Smith, **S.D. Jacobsen**, and R.T. Downs (2000) Compression of witherite to 8 GPa and the crystal structure of $\text{BaCO}_3\text{-II}$. *Physics and Chemistry of Minerals* 27, 467-473.

[7] **Jacobsen, S.D.**, J.R. Smyth, R.J. Swope, and R. Sheldon (2000) Two proton positions in the very strong hydrogen bond of serandite, $\text{NaMn}_2[\text{Si}_3\text{O}_8(\text{OH})]$. *American Mineralogist* 85, 745-752.

[6] Reichmann, H.J., **S.D. Jacobsen**, S.J. Mackwell, and C.A. McCammon (2000) Sound wave velocities and elastic constants for magnesiowüstite using gigahertz interferometry. *Geophysical Research Letters* 27, 799-802.

[5] Smyth, J.R., **S.D. Jacobsen**, and R.M. Hazen (2000) Comparative crystal chemistry of orthosilicate minerals. In: R.M. Hazen and R.T. Downs (Eds.) High-temperature and high-pressure crystal chemistry, *Reviews in Mineralogy and Geochemistry* 41, 187-209.

[4] Smyth, J.R., **S.D. Jacobsen**, and R.M. Hazen (2000) Comparative crystal chemistry of dense oxide minerals. In: R.M. Hazen and R.T. Downs (Eds.) High-temperature and high-pressure crystal chemistry, *Reviews in Mineralogy and Geochemistry* 41, 157-186.

[3] Smyth, J.R., **S.D. Jacobsen**, R.J. Swope, R.J. Angel, T. Arlt, K. Domanik, and J.R. Holloway (2000) Crystal structures and compressibilities of synthetic $2M_1$ and $3T$ phengite micas. *European Journal of Mineralogy* 12, 955-963.

1998

[2] **Jacobsen, S.D.**, Smyth, J.R., Swope, R.J., and R.T. Downs (1998) Rigid-body character of the SO_4 groups in celestine, anglesite, and barite. *Canadian Mineralogist*, 36, 1053-1060.

1997

[1] Smyth, J.R., T. Kawamoto, **S.D. Jacobsen**, R.J. Swope, R.L. Herving, and J.R. Holloway (1997) Crystal structure of monoclinic hydrous wadsleyite, $[\beta-(Mg,Fe)_2SiO_4]$. *American Mineralogist*, 82, 270-275.

Books and Edited Volumes

Goncharov, A., **S.D. Jacobsen**, V. Struzhkin and P. Beck (2008) Optical properties of deep-Earth minerals. *McGraw-Hill Yearbook of Science & Technology* 2008, 242-245.

Jacobsen, S.D. and S. van der Lee (2006) (Editors) *Earth's Deep Water Cycle*, Geophysical Monograph 168, AGU, Washington D.C., 314 pages, ISBN: 978-0-87590-433-7.

Dera, P., C.T. Prewitt, and **S.D. Jacobsen** (2005) (Editors) Structure Determination by Single-Crystal X-ray Diffraction at Megabar Pressures. *Journal of Synchrotron Radiation*, Vol 12, Part 5.