Simulations of a binary-sized mixture of inelastic grains in rapid shear flow. Journal Article uri icon



  • In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.

publication date

  • March 1, 2002

Date in CU Experts

  • September 6, 2013 11:57 AM

Full Author List

  • Clelland R; Hrenya CM

author count

  • 2

citation count

  • 15

Other Profiles

International Standard Serial Number (ISSN)

  • 1539-3755

Electronic International Standard Serial Number (EISSN)

  • 1550-2376

Additional Document Info

start page

  • 031301


  • 65


  • 3 Pt 1