Dynamics of Synoptic Eddy and Low-Frequency Flow Interaction. Part II: A Theory for Low-Frequency Modes Journal Article uri icon



  • Abstract; Amidst stormy atmospheric circulation, there are prominent recurrent patterns of variability in the planetary circulation, such as the Antarctic Oscillation (AAO), Arctic Oscillation (AO) or North Atlantic Oscillation (NAO), and the Pacific–North America (PNA) pattern. The role of the synoptic eddy and low-frequency flow (SELF) feedback in the formation of these dominant low-frequency modes is investigated in this paper using the linear barotropic model with the SELF feedback proposed in Part I. It is found that the AO-like and AAO-like leading singular modes of the linear dynamical system emerge from the stormy background flow as the result of a positive SELF feedback. This SELF feedback also prefers a PNA-like singular vector as well among other modes under the climatological conditions of northern winters.; A model with idealized conditions of basic mean flow and activity of synoptic eddy flow and a prototype model are also used to illustrate that there is a natural scale selection for the AAO- and AO-like modes through the positive SELF feedback. The zonal scale of the localized features in the Atlantic (southern Indian Ocean) for AO (AAO) is largely related to the zonal extent of the enhanced storm track activity in the region. The meridional dipole structures of AO- and AAO-like low-frequency modes are favored because of the scale-selective positive SELF feedback, which can be heuristically understood by the tilted-trough mechanism.

publication date

  • July 1, 2006

has restriction

  • hybrid

Date in CU Experts

  • June 5, 2021 10:58 AM

Full Author List

  • Jin F-F; Pan L-L; Watanabe M

author count

  • 3

Other Profiles

International Standard Serial Number (ISSN)

  • 0022-4928

Electronic International Standard Serial Number (EISSN)

  • 1520-0469

Additional Document Info

start page

  • 1695

end page

  • 1708


  • 63


  • 7