• Contact Info
Publications in VIVO
 

Musgrave, Charles Bruce

Professor and Robert H. Davis Endowed Professor

Positions

Research Areas research areas

Research

research overview

  • Professor Musgrave's research is focused on the use of computational quantum mechanics and machine learning to investigate engineering processes at a fundamental level and discover new materials and chemical mechanisms. His work comprises a range of technologies including: catalysis to split water, catalytic reduction of CO2 to hydrocarbons, polymerization and photopolymerization, organic catalysts and photocatalysts, photo initiators, advanced battery technology, pseudocapacitors, photovoltaics, solar thermal hydrogen production, and atomic layer deposition. Professor Musgrave is known for pioneering applications of quantum chemical simulations within chemical engineering and is often the first to provide detailed and fundamental descriptions of many important processes including atomic layer deposition, nanotechnology, organic functionalization of semiconductors, CO2 reduction and other catalytic systems.

keywords

  • computational materials science, computational chemistry, quantum chemistry, photovoltaics, energy storage, batteries, electrochemistry and electrocatalysis, catalysis, photocatalysis, photochemistry, machine learning, photo initiators, photopolymerization, solar fuels, renewable, water splitting, CO2 reduction, ammonia synthesis, fuels, electronic materials, thin film deposition, surface science, chemical kinetics, reaction mechanisms

Publications

selected publications

Teaching

courses taught

  • CHEN 1300 - Introduction to Chemical Engineering
    Primary Instructor - Fall 2019
    Meets for one lecture per week. Introduces chemical engineering emphasizing history of the profession, curriculum, chemical industry, and industrial chemistry. Includes industry visits, oral presentations, faculty and professional meetings,and development of a goals statement.
  • CHEN 3220 - Chemical Engineering Separations and Mass Transfer
    Primary Instructor - Spring 2019
    Studies separation methods including distillation, absorption, extraction, and membranes, and graphical and computer-based solutions to separation problems. Applies mass transfer rate theory to packed and tray columns.
  • CHEN 4521 - Physical Chemistry for Engineers
    Primary Instructor - Spring 2021 / Spring 2022
    Examines the laws of classical thermodynamics followed by physical transformations of pure substances, the thermodynamics of simple mixtures and chemical equilibrium. Applies quantum theory to atomic and molecular structure. Presents the concepts and applications of statistical thermodynamics. Introduces rates of chemical reactions, reaction dynamics and catalysis.
  • CHEN 5390 - Chemical Reactor Engineering
    Primary Instructor - Fall 2023
    Studies ideal and nonideal chemical reactors, including unsteady state behavior, mixing effects, reactor stability, residence time distribution and diffusion effects. Department enforced prerequisite: undergraduate course in chemical reactor design/kinetics.
  • CHEN 5838 - Special Topics in Chemical Engineering
    Primary Instructor - Fall 2020
    Graduate-selected topics courses offered upon demand. May be repeated up to 6 total credit hours.
  • CHEN 5919 - Special Topics in CHBE
    Primary Instructor - Spring 2018 / Spring 2019 / Spring 2020 / Spring 2023 / Fall 2023 / Spring 2024
    May be repeated up to 5 total credit hours.
  • CHEN 6950 - Master's Thesis
    Primary Instructor - Spring 2021 / Summer 2021
    -
  • COEN 1830 - Special Topics
    Primary Instructor - Fall 2023
    Explores topics of interest in transitioning to the College of Engineering and succeeding in STEM majors.

Background

International Activities

Other Profiles