placeholder image
  • Contact Info
Publications in VIVO
 

Chen, Lijun Assistant Professor

Positions

Research Areas research areas

Research

research overview

  • Chen's research aims to build rigorous foundations and develop new methodologies in optimization, control, and systems theory for analysis, control, and design of complex networked systems. Problems associated with such systems are typically large, computationally hard, and often require distributed solutions; yet they are also very structured and have features that can be exploited by appropriate computational methods. His research focuses on developing optimization approaches for such problems, and aims to develop theories, methods, and tools for modeling, exploiting structure, and distributing the design, optimization, and control of networked systems. A long-term research goal is to create a mathematical underpinning of network architecture that would include a unified framework that integrates computation, communication, control, and incentive, and allow rigorous analysis and systematic design of complex networked systems.

keywords

  • Control and optimization of complex networked systems, Distributed optimization and control, Convex relaxation and parsimonious solutions, Game theory and its engineering applications, Theoretical foundation of complex engineering networks

Publications

selected publications

Teaching

courses taught

  • CSCI 3104 - Algorithms
    Primary Instructor - Fall 2018 / Fall 2019 / Spring 2020
    Covers the fundamentals of algorithms and various algorithmic strategies, including time and space complexity, sorting algorithms, recurrence relations, divide and conquer algorithms, greedy algorithms, dynamic programming, linear programming, graph algorithms, problems in P and NP, and approximation algorithms. Same as CSPB 3104.
  • CSCI 5254 - Convex Optimization and Its Applications
    Primary Instructor - Spring 2018 / Spring 2019
    Discuss basic convex analysis (convex sets, functions and optimization problems), optimization theory (linear, quadratic, semidefinite and geometric programming; optimality conditions and duality theory), some optimization algorithms (descent methods and interior-point methods), basic applications (in signal processing, control, communications, networks, statistics, machine learning, circuit design and mechanical engineering, etc.), and some advanced topics (distributed decomposition, exact convex relaxation, parsimonious recovery).

Background

Other Profiles