Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. Journal Article uri icon



  • Core-shell type nanoparticles with SnO2 and TiO2 cores and zinc oxide shells were prepared and characterized by surface sensitive techniques. The influence of the structure of the ZnO shell and the morphology ofnanoparticle films on the performance was evaluated. X-ray absorption near-edge structure and extended X-ray absorption fine structure studies show the presence of thin ZnO-like shells around the nanoparticles at low Zn levels. In the case of SnO2 cores, ZnO nanocrystals are formed at high Zn/Sn ratios (ca. 0.5). Scanning electron microscopy studies show that Zn modification of SnO2 nanoparticles changes the film morphology from a compact mesoporous structure to a less dense macroporous structure. In contrast, Zn modification of TiO2 nanoparticles has no apparent influence on film morphology. For SnO2 cores, adding ZnO improves the solar cell efficiency by increasing light scattering and dye uptake and decreasing recombination. In contrast, adding a ZnO shell to the TiO2 core decreases the cell efficiency, largely owing to a loss of photocurrent resulting from slow electron transport associated with the buildup of the ZnO surface layer.

publication date

  • May 11, 2004

has restriction

  • closed

Date in CU Experts

  • March 13, 2015 11:27 AM

Full Author List

  • Park NG; Kang MG; Kim KM; Ryu KS; Chang SH; Kim DK; van de Lagemaat J; Benkstein KD; Frank AJ

author count

  • 9

Other Profiles

International Standard Serial Number (ISSN)

  • 0743-7463

Additional Document Info

start page

  • 4246

end page

  • 4253


  • 20


  • 10