Symmetry-directed control of electronic coupling for singlet fission in covalent bis-acene dimers. Journal Article uri icon



  • While singlet fission (SF) has developed in recent years within material settings, much less is known about its control in covalent dimers. Such platforms are of fundamental importance and may also find practical use in next-generation dye-sensitized solar cell applications or for seeding SF at interfaces following exciton transport. Here, facile theoretical tools based on Boys localization methods are used to predict diabatic coupling for SF via determination of one-electron orbital coupling matrix elements. The results expose important design rules that are rooted in point group symmetry. For Cs-symmetric dimers, pathways for SF that are mediated by virtual charge transfer excited states destructively interfere with negative impact on the magnitude of diabatic coupling for SF. When dimers have C2 symmetry, constructive interference is enabled for certain readily achievable interchromophore orientations. Three sets of dimers exploiting these ideas are explored: a bis-tetracene pair and two sets of aza-substituted tetracene dimers. Remarkable control is shown. In one aza-substituted set, symmetry has no impact on SF reaction thermodynamics but leads to a 16-fold manipulation in SF diabatic coupling. This translates to a difference of nearly 300 in kSF with the faster of the two dimers (C2) being predicted to undergo the process on a nearly ultrafast 1.5 ps time scale.

publication date

  • November 19, 2015

has restriction

  • closed

Date in CU Experts

  • November 5, 2015 2:23 AM

Full Author List

  • Damrauer NH; Snyder JL

author count

  • 2

Other Profiles

Electronic International Standard Serial Number (EISSN)

  • 1948-7185

Additional Document Info

start page

  • 4456

end page

  • 4462


  • 6


  • 22