A Pacific Centennial Oscillation Predicted by Coupled GCMs* Journal Article uri icon

Overview

abstract

  • Abstract; Internal climate variability at the centennial time scale is investigated using long control integrations from three state-of-the-art global coupled general circulation models. In the absence of external forcing, all three models produce centennial variability in the mean zonal sea surface temperature (SST) and sea level pressure (SLP) gradients in the equatorial Pacific with counterparts in the extratropics. The centennial pattern in the tropical Pacific is dissimilar to that of the interannual El Niño–Southern Oscillation (ENSO), in that the most prominent expression in temperature is found beneath the surface of the western Pacific warm pool. Some global repercussions nevertheless are analogous, such as a hemispherically symmetric atmospheric wave pattern of alternating highs and lows. Centennial variability in western equatorial Pacific SST is a result of the strong asymmetry of interannual ocean heat content anomalies, while the eastern equatorial Pacific exhibits a lagged, Bjerknes-like response to temperature and convection in the west. The extratropical counterpart is shown to be a flux-driven response to the hemispherically symmetric circulation anomalies emanating from the tropical Pacific.; Significant centennial-length trends in the zonal SST and SLP gradients rivaling those estimated from observations and model simulations forced with increasing CO2 appear to be inherent features of the internal climate dynamics simulated by all three models. Unforced variability and trends on the centennial time scale therefore need to be addressed in estimated uncertainties, beyond more traditional signal-to-noise estimates that do not account for natural variability on the centennial time scale.

publication date

  • September 1, 2012

has restriction

  • bronze

Date in CU Experts

  • January 19, 2017 10:15 AM

Full Author List

  • Karnauskas KB; Smerdon JE; Seager R; González-Rouco JF

author count

  • 4

Other Profiles

International Standard Serial Number (ISSN)

  • 0894-8755

Electronic International Standard Serial Number (EISSN)

  • 1520-0442

Additional Document Info

start page

  • 5943

end page

  • 5961

volume

  • 25

issue

  • 17