A multi-species data assimilation system to retrieve information on land-atmosphere exchange processes Journal Article uri icon

Overview

abstract

  • Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models we present here a first multi-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2/12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions. The multi-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions. With this system we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes, nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but potentially also to function as a data driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.;

publication date

  • May 30, 2017

has restriction

  • green

Date in CU Experts

  • November 8, 2020 2:05 AM

Full Author List

  • van der Velde IR; Miller JB; van der Molen MK; Tans PP; Vaughn BH; White JWC; Schaefer K; Peters W

author count

  • 8

Other Profiles