Atmospheric carbon cycle dynamics over the ABoVEdomain: an integrated analysis using aircraft observations (Arctic-CAP) and model simulations (GEOS) Journal Article uri icon

Overview

abstract

  • Abstract. The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project conducted six airborne surveys of Alaska and northwestern Canada between April and November 2017 to capture the spatial and temporal gradients of northern high-latitude carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) as part of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE). The Arctic-CAP sampling strategy involved acquiring vertical profiles of CO2, CH4 and CO from the surface to 5 km altitude at 25 sites around the ABoVE domain on a 4- to 6-week time interval. We observed vertical gradients of CO2, CH4 and CO that vary by eco-region and duration of the sampling period, which spanned the majority of the seasonal cycle. All Arctic-CAP measurements were compared to a global simulation using the Goddard Earth Observing System (GEOS) modeling system. Comparisons with GEOS simulations of atmospheric CO2, CH4 and CO highlight the potential of these multi-species observations to inform improvements in surface flux estimates and the representation of atmospheric transport. GEOS simulations provide estimates of the near surface average CO2 and CH4 enhancements that are well correlated with aircraft observations (R=0.74 and R=0.60 respectively), suggesting that GEOS has reasonable fidelity over this complex and heterogeneous region. This model-data comparison over the ABoVE domain reveals that while current state-of-the-art models and flux estimates are able to capture broadscale spatial and temporal patterns in near-surface CO2 and CH4 concentrations, more work is needed to resolve fine-scale flux features that are observed. The study also provides a framework for benchmarking a global model at regional scales, which is needed to use climate models as tools to investigate high-latitude carbon-climate feedbacks.;

publication date

  • September 11, 2020

has restriction

  • green

Date in CU Experts

  • November 11, 2020 1:12 AM

Full Author List

  • Sweeney C; Chatterjee A; Wolter S; McKain K; Bogue R; Newberger T; Hu L; Ott L; Poulter B; Schiferl L

author count

  • 13

Other Profiles