Coronal dimming as a proxy for stellar coronal mass ejections Journal Article uri icon



  • AbstractSolar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful flares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfvén-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.

publication date

  • June 1, 2019

has restriction

  • green

Date in CU Experts

  • January 7, 2021 5:35 AM

Full Author List

  • Jin M; Cheung MCM; DeRosa ML; Nitta NV; Schrijver CJ; France K; Kowalski A; Mason JP; Osten R

author count

  • 9

Other Profiles

International Standard Serial Number (ISSN)

  • 1743-9213

Electronic International Standard Serial Number (EISSN)

  • 1743-9221

Additional Document Info

start page

  • 426

end page

  • 432


  • 15


  • S354