The Atmospheric Response to Positive IPV, Positive AMV, and Their Combination in Boreal Winter Journal Article uri icon



  • AbstractThe interdecadal Pacific oscillation (hereafter termed IPV, using “variability” in lieu of “oscillation”) and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of low-frequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positive AMV is included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV–AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere.

publication date

  • July 15, 2019

has restriction

  • bronze

Date in CU Experts

  • June 1, 2022 9:30 AM

Full Author List

  • Elsbury D; Peings Y; Saint-Martin D; Douville H; Magnusdottir G

author count

  • 5

Other Profiles

International Standard Serial Number (ISSN)

  • 0894-8755

Electronic International Standard Serial Number (EISSN)

  • 1520-0442

Additional Document Info

start page

  • 4193

end page

  • 4213


  • 32


  • 14