The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack Journal Article uri icon

Overview

abstract

  • Abstract. Surface melting on the Antarctic Ice Sheet has been monitored by satellite microwave radiometery for over 40 years. Despite this long perspective, our understanding of the microwave emission from wet snow is still limited, preventing the full exploitation of these observations to study supraglacial hydrology. Using the Snow Microwave Radiative Transfer (SMRT) model, this study investigates the sensitivity of microwave brightness temperature to snow liquid water content at frequencies from 1.4 to 37 GHz. We first determine the snowpack properties for 8 selected coastal sites by retrieving profiles of density, grain size and ice layers from microwave observations when the snowpack is dry during winter time. Second, a series of brightness temperature simulations is run with added water. The results show that: i) a small amount of liquid water (≈0.5 kg m-2 can be detected, but the actual amount can not be retrieved in the full range of possible water contents, ii) the detection of a buried wet layer is possible up to a maximum 1 to 6 m depth depending on the frequency (6–37 GHz) and on the site, iii) surface ponds and water-saturated areas may prevent melt detection, but the current coverage of these water bodies in the large satellite field of view is presently too small in Antarctica to have noticeable effects, iv) at 1.4 GHz, while the simulations are less reliable, we found a weaker sensitivity to liquid water and the maximal depth of detection is relatively shallow (<10 m) compared to the typical radiation penetration depth in dry firn (≈1000 m) at this low frequency. These numerical results pave the way for the development of improved multi-frequency algorithms to detect melt intensity and depth in the Antarctic snowpack.;

publication date

  • May 19, 2022

has restriction

  • green

Date in CU Experts

  • June 26, 2022 12:57 PM

Full Author List

  • Picard G; Leduc-Leballeur M; Banwell AF; Brucker L; Macelloni G

author count

  • 5

Other Profiles