Impact of Model Parameters on Runoff Sensitivities in the Community Land Model: A Study on the Upper Colorado River Basin Journal Article uri icon



  • Understanding how land surface models (LSMs) partition precipitation into evapotranspiration and runoff under changing climate is key to improved future hydrologic predictions. This sensitivity is rarely tuned in land models, as evidenced by prevalent biases in the sensitivity of simulated runoff to precipitation and temperature change compared to observational estimates. Here, using the Community Land Model (CLM5) over the Colorado River basin (CRB), we investigate what the informative model parameters for runoff sensitivities are and how their choices affect the sensitivities under changing temperature and precipitation. We focus on the headwater region of the CRB, motivated by inconsistent model estimates of runoff sensitivities in the region and the critical need to better understand runoff changes to address the ongoing water crises in the CRB. In each headwater basin, a set of informative parameters were identified through parameter perturbations using “one at a time” method within an adaptive surrogate-based model optimization scheme (ASMO). Results of perturbations highlight that different parameter sets with similar performance (with respect to water-year discharge) provide very different runoff sensitivities to temperature and precipitation during the 1951-2010 period. Additionally, both precipitation and temperature sensitivities of runoff show sensitivity to similar parameters across the region. The most sensitive parameters control the conductance-photosynthesis relationship, soil surface resistance for direct evaporation, the partitioning of runoff into the surface and the subsurface component, and soil hydraulic properties. We show how the importance of each parameter varies through the parameter space and derive parameter estimates by maximizing the “fit to observed sensitivities” within the ASMO scheme. Our results provide key insights regarding parameters optimization to improve long-term hydrologic sensitivities in LSMs.

publication date

  • May 15, 2023

has restriction

  • closed

Date in CU Experts

  • February 28, 2023 10:45 AM

Full Author List

  • Pokhrel Y; Elkouk A; Luo L; Payton L; Livneh B; Cheng Y

author count

  • 6

Other Profiles