Comparison of UKESM1 and CESM2 Simulations Using the Same Multi-Target Stratospheric Aerosol Injection Strategy Journal Article uri icon

Overview

abstract

  • Abstract. Solar climate intervention using stratospheric aerosol injection (SAI) has been proposed as a method which could offset some of the adverse effects of global warming. The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) set of simulations is based on a moderate greenhouse gas emission scenario and employs injection of sulphur dioxide at four off-equatorial locations using a control algorithm which maintains the global-mean surface temperature at 1.5 K above preindustrial conditions (ARISE-SAI-1.5), as well as the latitudinal gradient and inter-hemispheric difference in surface temperature. This is the first comparison between two models (CESM2 and UKESM1) applying the same multi-target SAI strategy. CESM2 is successful in reaching its temperature targets, but UKESM1 has considerable residual Arctic warming. This occurs because the pattern of temperature change in a geoengineered climate is determined both by the structure of the climate forcing (mainly greenhouse gases and stratospheric aerosols) and the climate models’ feedbacks, the latter of which favour a strong Arctic amplification of warming in UKESM1. Therefore, research constraining the level of future Arctic warming would also inform any hypothetical SAI deployment strategy which aims to maintain the interhemispheric and equator-to-pole near-surface temperature differences. Furthermore, despite broad agreement in the precipitation response in the extratropics, precipitation changes over tropical land show important inter-model differences, even under greenhouse gas forcing only. In general, this ensemble comparison is the first step in comparing policy-relevant scenarios of SAI, and will help in the design of an experimental protocol which both reduces some known negative side effects of SAI and is simple enough to encourage more climate models to participate.;

publication date

  • June 5, 2023

has restriction

  • green

Date in CU Experts

  • June 27, 2023 5:56 AM

Full Author List

  • Henry M; Haywood J; Jones A; Dalvi M; Wells A; Visioni D; Bednarz E; MacMartin D; Lee W; Tye M

author count

  • 10

Other Profiles