Seismic Azimuthal Anisotropy Beneath the Alaska Subduction Zone Journal Article uri icon

Overview

abstract

  • AbstractWe estimate depth‐dependent azimuthal anisotropy and shear wave velocity structure beneath the Alaska subduction zone by the inversion of a new Rayleigh wave dispersion dataset from 8 to 85 s period. We present a layered azimuthal anisotropy model from the forearc region offshore to the subduction zone onshore. In the forearc crust, we find a trench‐parallel pattern in the Semidi and Kodiak segments, while a trench‐oblique pattern is observed in the Shumagins segment. These fast directions agree well with the orientations of local faults. Within the subducted slab, a dichotomous pattern of anisotropy fast axes is observed along the trench, which is consistent with the orientation of fossil anisotropy generated at the mid‐ocean ridges of the Pacific‐Vancouver and Kula‐Pacific plates that is preserved during subduction. Beneath the subducted slab, a trench‐parallel pattern is observed near the trench, which may indicate the direction of mantle flow.

publication date

  • July 28, 2024

has restriction

  • gold

Date in CU Experts

  • July 24, 2024 5:02 AM

Full Author List

  • Liu C; Sheehan AF; Ritzwoller MH

author count

  • 3

Other Profiles

International Standard Serial Number (ISSN)

  • 0094-8276

Electronic International Standard Serial Number (EISSN)

  • 1944-8007

Additional Document Info

volume

  • 51

issue

  • 14