Finding community structure in very large networks. Journal Article uri icon

Overview

abstract

  • The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O (md log n) where d isthe depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with m approximately n and d approximatelylog n, in which case our algorithm runs in essentially linear time, O (n log(2) n). As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. Thenetwork has more than 400 000 vertices and 2 x 10(6) edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.

publication date

  • January 1, 2004

Full Author List

  • Clauset A; Newman MEJ; Moore C

Additional Document Info

start page

  • 066111

end page

  • 066111

volume

  • 70