Multifunctional Tubular Organic Cage‐Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis Journal Article uri icon



  • AbstractThe imine condensation reaction of 5,5′‐(benzo[c][1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde with cyclohexanediamine resulted in a shape‐persistent multifunctional tubular organic cage (MTC1). It exhibits selective fluorescence sensing towards divalent Pd ions with a very low detection limit (38 ppb), suggesting effective complexation between these two species. Subsequent reduction of MTC1 and Pd(OAc)2 with NaBH4 afforded a cage‐supported catalyst with well‐dispersed ultrafine Pd nanoparticles (NPs) in a narrow size distribution (1.9±0.4 nm), denoted as Pd@MTC1‐1/5. Such ultrafine Pd NPs in Pd@MTC1‐1/5, in cooperation with photocatalytically active MTC1, enable efficient sequential reactions involving visible light‐induced aerobic hydroxylation of 4‐nitrophenylboronic acid to 4‐nitrophenol and the following hydride reduction with NaBH4. This is the first example of a multifunctional organic cage capable of sensing, directing nanoparticle growth, and catalyzing sequential reactions.

publication date

  • December 9, 2019

has restriction

  • closed

Date in CU Experts

  • November 11, 2020 3:16 AM

Full Author List

  • Sun N; Wang C; Wang H; Yang L; Jin P; Zhang W; Jiang J

author count

  • 7

Other Profiles

International Standard Serial Number (ISSN)

  • 0044-8249

Electronic International Standard Serial Number (EISSN)

  • 1521-3757

Additional Document Info

start page

  • 18179

end page

  • 18184


  • 131


  • 50