Investigation of Noninvasive Healing of Damaged Piping System using Electro-Magneto-Mechanical Methods Conference Proceeding uri icon

Overview

abstract

  • Abstract; Virtually all engineering applications involve the use of piping, conduits and channels. In the petroleum industry, piping systems are extensively employed in upstream and downstream processes. These piping systems often carry fluids that are corrosive, which leads to wear, cavitation and cracking. The replacement of damaged piping systems can be quite expensive, both in terms of capital costs, as well as in operational downtime. This motivates the present research on noninvasive healing of cracked piping systems. In this investigation, we propose to develop computational models for characterizing noninvasive repair strategies involving electromagnetically guided particles. The objective is to heal industrial-piping systems noninvasively, from the exterior of the system, during operation, resulting in no downtime, with minimal relative cost. The particle accumulation at a target location is controlled by external electro-magneto-mechanical means. There are two primary effects that play a role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how this relationship scales with characteristic physical parameters. Characteristic non-dimensional parameters that describe system behavior are derived and their role in design is illustrated. A detailed, fully 3-dimensional discrete element simulation framework is presented, and illustrated using a model problem of magnetically guided particles. The detailed particle behavior is considered to be regulated by three effects: (1) the field strength (2) the mass flow rate and (3) the wall interactions.

publication date

  • May 12, 2014

Date in CU Experts

  • November 14, 2020 7:26 AM

Full Author List

  • Mukherjee D; Zaky Z; Zohdi TI; Salama A; Sun S

author count

  • 5

Other Profiles