EllipTrack: A Global-Local Cell-Tracking Pipeline for 2D Fluorescence Time-Lapse Microscopy Journal Article uri icon

Overview

abstract

  • SummaryTime-lapse microscopy provides an unprecedented opportunity to monitor single-cell dynamics. However, tracking cells for long periods of time remains a technical challenge, especially for multi-day, large-scale movies with rapid cell migration, high cell density, and drug treatments that alter cell morphology/behavior. Here, we present EllipTrack, a global-local cell-tracking pipeline optimized for tracking such movies. EllipTrack first implements a global track-linking algorithm to construct tracks that maximize the probability of cell lineages, and then corrects tracking mistakes with a local track-correction module where tracks generated by the global algorithm are systematically examined and amended if a more probable alternative can be found. Through benchmarking, we show that EllipTrack outperforms state-of-the-art cell trackers and generates nearly error-free cell lineages for multiple large-scale movies. In addition, EllipTrack can adapt to time- and cell density-dependent changes in cell migration speeds, requires minimal training datasets, and provides a user-friendly interface. EllipTrack is available atgithub.com/tianchengzhe/EllipTrack.

publication date

  • April 13, 2020

has restriction

  • green

Date in CU Experts

  • November 17, 2020 10:37 AM

Full Author List

  • Tian C; Yang C; Spencer SL

author count

  • 3

Other Profiles