Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere Journal Article uri icon



  • Abstract. The size of aerosol particles has fundamental effects on their chemistry and radiative effects. We explore those effects using aerosol size and composition data in the lowermost stratosphere along with calculations of light scattering. In the size range between about 0.1 and 1.0 ┬Ám diameter (accumulation mode), there are at least two modes of particles in the lowermost stratosphere. The larger mode consists mostly of particles produced in the stratosphere and the smaller mode consists mostly of particles transported from the troposphere. The stratospheric mode is similar in the Northern and Southern hemispheres whereas the tropospheric mode is much more abundant in the Northern Hemisphere. The two modes have very different roles for radiative effects on climate and for heterogeneous chemistry. Because the larger particles are more efficient at scattering light, most of the radiative effect in the lowermost stratosphere is due to stratospheric particles. In contrast, the tropospheric particles can have more surface area, at least in the Northern Hemisphere. The surface area of tropospheric particles could have significant implications for heterogeneous chemistry because these particles, which are partially neutralized and contain organics, do not correspond to the surfaces used for laboratory studies of stratospheric heterogeneous chemistry. The purity of sulfuric acid particles in the stratospheric mode shows that there is limited production of secondary organic aerosol in the stratosphere, especially in the Southern Hemisphere. Out of eight sets of flights sampling the lowermost stratosphere (four seasons and two hemispheres) there were three with large injections of specific materials: volcanic, biomass burning, or dust. We then extend the analysis of size-dependent properties to particles considered for intentional climate modification. There is no single size that will simultaneously optimize the climate impact relative to the injected mass, infrared heating, potential for heterogeneous chemistry, and undesired changes in direct sunlight. In addition, light absorption in the far ultraviolet is identified as an issue requiring more study for both the existing and potentially modified stratosphere.;

publication date

  • September 22, 2020

has restriction

  • green

Date in CU Experts

  • June 3, 2021 9:34 AM

Full Author List

  • Murphy DM; Froyd KD; Bourgeois I; Brock CA; Kupc A; Peischl J; Schill GP; Thompson CR; Williamson CJ; Yu P

author count

  • 10

Other Profiles