Volatility and lifetime against OH heterogeneous reaction of ambient Isoprene Epoxydiols-Derived Secondary Organic Aerosol (IEPOX-SOA) Journal Article uri icon

Overview

abstract

  • Abstract. Isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting for example for 16–36 % of the submicron OA in the SE US summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR cannot accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~ 100 µg m−3 of pure H2SO4 to the ambient air allows to efficiently form IEPOX-SOA in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 × 10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec. cm−3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report for the first time OH reactive uptake coefficients (γOH = 0.59 ± 0.33 in SE US and γOH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observation of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.;

publication date

  • May 23, 2016

has restriction

  • green

Date in CU Experts

  • June 25, 2021 4:42 AM

Full Author List

  • Hu W; Palm BB; Day DA; Campuzano-Jost P; Krechmer JE; Peng Z; de Sá SS; Martin ST; Alexander ML; Baumann K

author count

  • 24

Other Profiles