The topography contribution to the influence of the atmospheric boundary layer at high altitude stations Journal Article uri icon

Overview

abstract

  • Abstract. High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer (ABL) air masses due to convective transport processes. The local and meso-scale topographical features around the station are involved in the convective boundary layer development and in the formation of thermally induced winds leading to ABL air lifting. The station altitude is not a sufficient parameter to characterize the ABL influence. Topography data from the global digital elevation model GTopo30 were used to calculate 5 parameters for 46 high altitude stations situated in five continents. The geometric mean of these 5 parameters determines a topography based index called ABL-TopoIndex which can be used to rank the high altitude stations as a function of the ABL influence. To construct the ABL-TopoIndex, we rely on the criteria that the ABL influence will be low if the station is one of the highest points in the mountainous massif, if there is a large altitude difference between the station and the valleys or plateaus, if the slopes around the station are steep, and finally if the drainage basin for air convection is small. All stations on volcanic islands exhibit a low ABL-TopoIndex whereas stations in the Himalaya and the Tibetan Plateau have high ABL-TopoIndex values. Spearman's rank correlation between aerosol optical properties and number concentration from 28 stations and the ABL-TopoIndex, the altitude and the latitude are used to validate this topographical approach. Statistically significant (s.s.) correlations are found between the 5 and 50 percentiles of all aerosol parameters and the ABL-TopoIndex whereas no s.s. correlation is found with the station altitude. The diurnal cycles of aerosol parameters seem to be best explained by the station latitude although a s.s. correlation is found between the amplitude of the diurnal cycles of the absorption coefficient and the ABL-TopoIndex. Finally, the main flow paths for air convection were calculated for various ABL heights.;

publication date

  • September 25, 2017

has restriction

  • green

Date in CU Experts

  • July 8, 2023 4:57 AM

Full Author List

  • Collaud Coen M; Andrews E; Aliaga D; Andrade M; Angelov H; Bukowiecki N; Ealo M; Fialho P; Flentje H; Hallar AG

author count

  • 28

Other Profiles