Implementation and Exploration of Parameterizations of Large‐Scale Dynamics in NCAR's Single Column Atmosphere Model SCAM6 Journal Article uri icon

Overview

abstract

  • AbstractA single column model with parameterized large‐scale (LS) dynamics is used to better understand the response of steady‐state tropical precipitation to relative sea surface temperature under various representations of radiation, convection, and circulation. The large‐scale dynamics are parametrized via the weak temperature gradient (WTG), damped gravity wave (DGW), and spectral weak temperature gradient (Spectral WTG) method in NCAR's Single Column Atmosphere Model (SCAM6). Radiative cooling is either specified or interactive, and the convective parameterization is run using two different values of a parameter that controls the degree of convective inhibition. Results are interpreted in the context of the Global Atmospheric System Studies ‐Weak Temperature Gradient (GASS‐WTG) Intercomparison project. Using the same parameter settings and simulation configuration as in the GASS‐WTG Intercomparison project, SCAM6 under the WTG and DGW methods produces erratic results, suggestive of numerical instability. However, when key parameters are changed to weaken the large‐scale circulation's damping of tropospheric temperature variations, SCAM6 performs comparably to single column models in the GASS‐WTG Intercomparison project. The Spectral WTG method is less sensitive to changes in convection and radiation than are the other two methods, performing qualitatively similarly across all configurations considered. Under all three methods, circulation strength, represented in 1D by grid‐scale vertical velocity, is decreased when barriers to convection are reduced. This effect is most extreme under specified radiative cooling, and is shown to come from increased static stability in the column's reference radiative‐convective equilibrium profile. This argument can be extended to interactive radiation cases as well, though perhaps less conclusively.

publication date

  • June 1, 2024

has restriction

  • gold

Date in CU Experts

  • June 26, 2024 2:55 AM

Full Author List

  • Cohen S; Sobel A; Biasutti M; Wang S; Simpson I; Gettelman A; Hu I

author count

  • 7

Other Profiles

International Standard Serial Number (ISSN)

  • 1942-2466

Electronic International Standard Serial Number (EISSN)

  • 1942-2466

Additional Document Info

volume

  • 16

issue

  • 6