Implementing reactivity in molecular dynamics simulations with harmonic force fields. Journal Article uri icon

Overview

abstract

  • The simulation of chemical reactions and mechanical properties including failure from atoms to the micrometer scale remains a longstanding challenge in chemistry and materials science. Bottlenecks include computational feasibility, reliability, and cost. We introduce a method for reactive molecular dynamics simulations using a clean replacement of non-reactive classical harmonic bond potentials with reactive, energy-conserving Morse potentials, called the Reactive INTERFACE Force Field (IFF-R). IFF-R is compatible with force fields for organic and inorganic compounds such as IFF, CHARMM, PCFF, OPLS-AA, and AMBER. Bond dissociation is enabled by three interpretable Morse parameters per bond type and zero energy upon disconnect. Use cases for bond breaking in molecules, failure of polymers, carbon nanostructures, proteins, composite materials, and metals are shown. The simulation of bond forming reactions is included via template-based methods. IFF-R maintains the accuracy of the corresponding non-reactive force fields and is about 30 times faster than prior reactive simulation methods.

publication date

  • September 11, 2024

has restriction

  • gold

Date in CU Experts

  • September 21, 2024 1:03 AM

Full Author List

  • Winetrout JJ; Kanhaiya K; Kemppainen J; In 't Veld PJ; Sachdeva G; Pandey R; Damirchi B; van Duin A; Odegard GM; Heinz H

author count

  • 10

Other Profiles

Electronic International Standard Serial Number (EISSN)

  • 2041-1723

Additional Document Info

start page

  • 7945

volume

  • 15

issue

  • 1