Two-dimensional periodic waves in shallow water Journal Article uri icon

Overview

abstract

  • Experimental data are presented that demonstrate the existence of a family of gravitational water waves that propagate practically without change of form on the surface of shallow water of uniform depth. The surface patterns of these waves are genuinely two-dimensional and fully periodic, i.e. they are periodic in two spatial directions and in time. The amplitudes of these waves need not be small; their form persists even up to breaking. The waves are easy to generate experimentally, and they are observed to propagate in a stable manner, even when perturbed significantly. The measured waves are described with reasonable accuracy by a family of exact solutions of the Kadomtsev-Petviashvili equation (KP solutions of genus 2) over the entire parameter range of the experiments, including waves well outside the putative range of validity of the KP equation. These genus-2 solutions of the KP equation may be viewed as two-dimensional generalizations of cnoidal waves.

publication date

  • December 1, 1989

has restriction

  • closed

Date in CU Experts

  • September 17, 2013 8:22 AM

Full Author List

  • Hammack J; Scheffner N; Segur H

author count

  • 3

Other Profiles

International Standard Serial Number (ISSN)

  • 0022-1120

Electronic International Standard Serial Number (EISSN)

  • 1469-7645

Additional Document Info

start page

  • 567

end page

  • 589

volume

  • 209