Comparisons and physics basis of tokamak transport models and turbulence simulations Journal Article uri icon

Overview

abstract

  • The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient (ITG) instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transport models, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed.

publication date

  • March 1, 2000

has restriction

  • closed

Date in CU Experts

  • January 22, 2015 12:41 PM

Full Author List

  • Dimits AM; Bateman G; Beer MA; Cohen BI; Dorland W; Hammett GW; Kim C; Kinsey JE; Kotschenreuther M; Kritz AH

author count

  • 18

Other Profiles

International Standard Serial Number (ISSN)

  • 1070-664X

Electronic International Standard Serial Number (EISSN)

  • 1089-7674

Additional Document Info

start page

  • 969

end page

  • 983

volume

  • 7

issue

  • 3