Targeting riboswitches with beta-axial substituted cobalamins Journal Article uri icon

Overview

abstract

  • AbstractRNA-targeting small molecule therapeutics an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of eleven cobalamin derivatives with three representative cobalamin riboswitches usingin vitrobinding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneously plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted in the future. As the derivatives also showin vivofunctionality, they serve as several potential lead compounds for further drug development.

publication date

  • December 25, 2022

has restriction

  • green

Date in CU Experts

  • January 3, 2023 8:05 AM

Full Author List

  • Lennon SR; Wierzba AJ; Siwik SH; Gryko D; Palmer AE; Batey RT

author count

  • 6

Other Profiles