Evolutionary Aspects of Diverse Microbial Exposures and Mental Health: Focus on "Old Friends" and Stress Resilience. Chapter uri icon



  • The prevalence of inflammatory disease conditions, including allergies, asthma, and autoimmune disorders, increased during the latter half of the twentieth century, as societies transitioned from rural to urban lifestyles. A number of hypotheses have been put forward to explain the increasing prevalence of inflammatory disease in modern urban societies, including the hygiene hypothesis and the "Old Friends" hypothesis. In 2008, Rook and Lowry proposed, based on the evidence that increased inflammation was a risk factor for stress-related psychiatric disorders, that the hygiene hypothesis or "Old Friends" hypothesis may be relevant to psychiatric disorders. Since then, it has become more clear that chronic low-grade inflammation is a risk factor for stress-related psychiatric disorders, including anxiety disorders, mood disorders, and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD). Evidence now indicates that persons raised in modern urban environments without daily contact with pets, relative to persons raised in rural environments in proximity to farm animals, respond with greater systemic inflammation to psychosocial stress. Here we consider the possibility that increased inflammation in persons living in modern urban environments is due to a failure of immunoregulation, i.e., a balanced expression of regulatory and effector T cells, which is known to be dependent on microbial signals. We highlight evidence that microbial signals that can drive immunoregulation arise from phylogenetically diverse taxa but are strain specific. Finally, we highlight Mycobacterium vaccae NCTC 11659, a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, as a case study of how single strains of bacteria might be used in a psychoneuroimmunologic approach for prevention and treatment of stress-related psychiatric disorders.

publication date

  • January 1, 2023

has restriction

  • green

Date in CU Experts

  • January 6, 2023 4:38 AM

Full Author List

  • Dawud LM; Holbrook EM; Lowry CA

author count

  • 3

Other Profiles

Additional Document Info

start page

  • 93

end page

  • 117


  • 61