Sleep duration, plasma metabolites, and obesity and diabetes: a metabolome-wide association study in US women. Journal Article uri icon



  • Short and long sleep duration are associated with adverse metabolic outcomes, such as obesity and diabetes. We evaluated cross-sectional differences in metabolite levels between women with self-reported habitual short (<7 h), medium (7-8 h), and long (≥9 h) sleep duration to delineate potential underlying biological mechanisms. In total, 210 metabolites were measured via liquid chromatography-mass spectrometry in 9207 women from the Nurses' Health Study (NHS; N = 5027), the NHSII (N = 2368), and the Women's Health Initiative (WHI; N = 2287). Twenty metabolites were consistently (i.e. praw < .05 in ≥2 cohorts) and/or strongly (pFDR < .05 in at least one cohort) associated with short sleep duration after multi-variable adjustment. Specifically, levels of two lysophosphatidylethanolamines, four lysophosphatidylcholines, hydroxyproline and phenylacetylglutamine were higher compared to medium sleep duration, while levels of one diacylglycerol and eleven triacylglycerols (TAGs; all with ≥3 double bonds) were lower. Moreover, enrichment analysis assessing associations of metabolites with short sleep based on biological categories demonstrated significantly increased acylcarnitine levels for short sleep. A metabolite score for short sleep duration based on 12 LASSO-regression selected metabolites was not significantly associated with prevalent and incident obesity and diabetes. Associations of single metabolites with long sleep duration were less robust. However, enrichment analysis demonstrated significant enrichment scores for four lipid classes, all of which (most markedly TAGs) were of opposite sign than the scores for short sleep. Habitual short sleep exhibits a signature on the human plasma metabolome which is different from medium and long sleep. However, we could not detect a direct link of this signature with obesity and diabetes risk.

publication date

  • January 11, 2023

has subject area

has restriction

  • green

Date in CU Experts

  • August 30, 2023 12:49 PM

Full Author List

  • Fritz J; Huang T; Depner CM; Zeleznik OA; Cespedes Feliciano EM; Li W; Stone KL; Manson JE; Clish C; Sofer T

author count

  • 15

published in

Other Profiles

Electronic International Standard Serial Number (EISSN)

  • 1550-9109

Additional Document Info


  • 46


  • 1