abstract
- Although the two alternative Escherichia coli dnaX gene products, tau and gamma, are found co-assembled in purified DNA polymerase III holoenzyme, the pathway of assembly is not well understood. When the 10 subunits of holoenzyme are simultaneously mixed, they rapidly form a nine-subunit assembly containing tau but not gamma. We developed a new assay based on the binding of complexes containing biotin-tagged tau to streptavidin-coated agarose beads to investigate the effects of various DNA polymerase III holoenzyme subunits on the kinetics of co-assembly of gamma and tau into the same complex. Auxiliary proteins in combination with delta' almost completely blocked co-assembly, whereas chipsi or delta' alone slowed the association only moderately compared with the interaction of tau with gamma alone. In contrast, DNA polymerase III core, in the absence of deltadelta' and chipsi, accelerated the co-assembly of tau and gamma, suggesting a role for DNA polymerase III' [tau(2)(pol III core)(2)] in the assembly pathway of holoenzyme.