• Contact Info
Publications in VIVO

Beaudry, Agnes Assistant Professor


Research Areas research areas


research overview

  • Dr. Beaudry's research is in algebraic topology, more precisely in homotopy theory. She studies of the stable homotopy groups of spheres and various localizations of the category of spectra, a topological analogue of the category of chain complexes. Her main expertise is chromatic homotopy theory, which uses the algebraic geometry of formal group laws to organize information and streamline computations. In this context, she studies transchromatic phenomena and duality. Her work revolves around two important open conjectures (the chromatic splitting conjecture and the telescope conjecture) and she uses tools from equivariant homotopy theory. Recently, she has also been interested in applications of homotopy theory to mathematical physics.


  • algebraic topology, homotopy theory (stable, equivariant, chromatic) and applications to condensed matter physics


selected publications


courses taught

  • MATH 2001 - Introduction to Discrete Mathematics
    Primary Instructor - Spring 2018
    Introduces the ideas of rigor and proof through an examination of basic set theory, existential and universal quantifiers, elementary counting, discrete probability, and additional topics. Credit not granted for this course and MATH 2002.
  • MATH 2002 - Number Systems: An Introduction to Higher Mathematics
    Primary Instructor - Fall 2019
    Introduces the concepts of mathematical proofs using the construction of the real numbers from set theory. Topics include basic logic and set theory, equivalence relations and functions, Peano's axioms, construction of the integers, the rational numbers and axiomatic treatment of the real numbers. Credit not granted for this course and MATH 2001.
  • MATH 2135 - Introduction to Linear Algebra for Mathematics Majors
    Primary Instructor - Spring 2021
    Examines basic properties of systems of linear equations, vector spaces, inner products, linear independence, dimension, linear transformations, matrices, determinants, eigenvalues, eigenvectors and diagonalization. Intended for students who plan to major in Mathematics. Degree credit not granted for this course and MATH 2130 or APPM 3310. Formerly MATH 3135.
  • MATH 3001 - Analysis 1
    Primary Instructor - Spring 2019 / Fall 2020
    Provides a rigorous treatment of the basic results from elementary Calculus. Topics include the topology of the real line, sequences of numbers, continuous functions, differentiable functions and the Riemann integral.
  • MATH 4200 - Introduction to Topology
    Primary Instructor - Fall 2019
    Introduces the basic concepts of point set topology. Includes topological spaces, metric spaces, homeomorphisms, connectedness and compactness. Same as MATH 5200.
  • MATH 6220 - Introduction to Topology 2
    Primary Instructor - Spring 2018 / Spring 2019
    Continuation of MATH 6210. Department enforced prerequisite: MATH 6210. Instructor consent required for undergraduates.
  • MATH 6280 - Advanced Algebraic Topology
    Primary Instructor - Fall 2020
    Covers homotopy theory, spectral sequences, vector bundles, characteristic classes, K-theory and applications to geometry and physics. Department enforced prerequisite: MATH 6220. Instructor consent required for undergraduates.


International Activities

Other Profiles