• Contact Info
Publications in VIVO

Erickson, Robert W

Co-Faculty Director

Positions

Research Areas research areas

Research

research overview

  • Dr. Erickson's research focuses on new approaches to control and convert electrical power with ultra-high efficiency, with application to renewable energy systems and other applications of electrical power. This research incorporates advances in magnetics technology and modeling with advances in power conversion circuitry to push the limits of achievable system efficiency. He has recently applied these results to demonstrate new building-integrated photovoltaic power systems that maximize energy harvest with complex building geometries, and also to demonstrate new power electronics architectures that substantially reduce the loss in electric vehicle drivetrains.

keywords

  • power electronics and control, power magnetics, electric vehicle power electronics, photovoltaic power systems, medical applications of power electronics

Publications

selected publications

Teaching

courses taught

  • ECEA 5005 - Special Topics
    Primary Instructor - Fall 2021
    Examines a special topic in Electrical, Computer, and Energy Engineering.
  • ECEA 5006 - Special Topics
    Primary Instructor - Fall 2021
    Examines a special topic in Electrical, Computer and Energy Engineering.
  • ECEA 5700 - Power Electronics: Introduction to Power Electronics
    Primary Instructor - Fall 2019 / Spring 2020 / Summer 2020 / Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced and developed for finding steady-state voltages, current, and efficiency of power converters. Assignments include a dc-dc converter simulation, inverting dc-dc converter analysis, and modeling of an electric vehicle system and a USB power regulator.
  • ECEA 5701 - Power Electronics: Converter Circuits
    Primary Instructor - Spring 2020 / Summer 2020 / Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Introduces more advanced switched-mode converter concepts. Realization of power semiconductors in inverters or in converters having bidirectional power flow is explained. Power diodes, power MOSFETs, and IGBTs are explained, including their switching time origins. Equivalent circuit models are refined to include the effects of switching loss. Several well-known converter circuit topologies are explored, including those with transformer isolation.
  • ECEA 5702 - Power Electronics: Converter Control
    Primary Instructor - Spring 2020 / Summer 2020 / Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    This course teaches feedback system design to control a switching converter. Equivalent circuit models derived in previous courses are extended to model small-signal ac variations. These models are then solved for important converter transfer functions and regulator system. Finally, the feedback loop is modeled and designed to meet requirements such as output regulation, bandwidth and transient response, and disturbance rejection.
  • ... more

Background

International Activities

Other Profiles