Complex systems of many interacting degrees of freedom can display qualitatively new physics with no analog in few body systems. The search for such emergent phenomena is one of the central goals of condensed matter physics (and its close cousin, statistical physics). My research is focused on the search for new emergent phenomena in quantum many body systems with strong interactions and/or strong randomness. I do theory work on quantum systems both in and out of equilibrium. Particular topics of interest include (but are not limited to) nonequilibrium quantum statistical mechanics, many body localization and thermalization, field theory of correlated systems, Dirac fermions, unconventional superconductors and the interplay of disorder and interactions; fractons.
PHYS 2170  Foundations of Modern Physics
Primary Instructor

Spring 2019 / Fall 2019
Covers special relativity, quantum mechanics and atomic structure. Completes the threesemester sequence of general physics for physics and engineering physics majors. Normally taken with the laboratory PHYS 2150. Degree credit not granted for this course and PHYS 2130.
PHYS 7440  Theory of the Solid State
Primary Instructor

Spring 2018 / Spring 2020
Stresses application to the solid state of physical concepts basic to much of modern physics, singleparticle approximation, and the energyband description of electron states in solids, pseudopotential theory applied to ordered and disordered systems, dynamical behavior of electrons in solids, lattice dynamics, HartreeFock and randomphase approximation in solids, manybody aspects of magnetism, and superconductivity.