• Contact Info
Publications in VIVO

Maksimovic, Dragan

Co-Faculty Director

Positions

Research Areas research areas

Research

research overview

  • Dr. Maksimovic's research is focused on power electronics, the technology that ties renewable sources such as photovoltaics and wind turbines to the electric power grid, propels hybrid and electric vehicles, powers a countless variety of electronic systems, and makes it possible to operate battery-powered mobile devices for many hours. Dr. Maksimovic is directing the Colorado Power Electronics Center (CoPEC) in explorations of ways to achieve significant system-level advances in energy efficiency and renewable energy sources via smart power electronics. Current research project topics include efficiency improvements in photovoltaic power systems, digital control of high-frequency switched-mode power converters, high-frequency power electronics using wide bandage semiconductors, high-efficiency radio transmitters, auto-tuning and adaptive control techniques in power conversion, and power electronics for electrified transportation.

keywords

  • Power Electronics

Publications

selected publications

Teaching

courses taught

  • ECEA 5705 - Modeling, Control of Power Elec: Avged-Sw Modeling and Sim
    Primary Instructor - Spring 2020 / Summer 2020 / Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Focuses on practical design-oriented modeling and control of pulse-width modulated switched-mode power converters using analytical and simulation tools in time and frequency domains. A design-oriented analysis technique, the Middlebrook's feedback theorem, is introduced and applied to analysis and design of voltage regulators and other feedback circuits. Furthermore, circuit averaging and averaged-switch modeling techniques are also covered in detail.
  • ECEA 5706 - Modeling, Control of Power Elec: Tech Dsgn-Oriented Analysis
    Primary Instructor - Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Focuses on two techniques of design-oriented analysis, Middlebrook's extra-element theorem (EET), and n-extra-element theorem (NEET). It is shown how EET simplifies circuit analysis and design, provides insights into effects of circuit elements initially neglected, and to formulate design approaches. NEET allows designers to easily derive complex transfer functions in circuits such as converter filters and averaged circuit models.
  • ECEA 5707 - Modeling, Control of Power Elec: Input Filter Design
    Primary Instructor - Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    To meet electromagnetic interference (EMI) requirements and mitigate effects of switching noise, switching power converters often require input filters. Using extra-element theorem, it is shown how adding an input filter may compromise system stability, and impedance criteria are formulated to mitigate system stability issues. Input filter design techniques are developed for single-stage and multi-stage filters to meet several design criteria.
  • ECEA 5708 - Modeling, Control of Power Elec: Current-mode Control
    Primary Instructor - Fall 2020 / Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Control loops around switch-mode power converters are often based on current-mode control techniques. This course is focuses on analysis, modeling and design of current programmed mode or peak current mode (PCM) control, as well as average current mode (ACM) control. Sampling effects and compensation ramp concepts are introduced. Averaged dynamic models and transfer functions of PCM-controlled converters are developed.
  • ECEA 5709 - Modeling, Control of Power Elec: Mod/Ctrl 1-Phase Rect/Inv
    Primary Instructor - Spring 2021 / Summer 2021 / Fall 2021 / Spring 2022 / Summer 2022 / Fall 2022 / Spring 2023 / Summer 2023 / Fall 2023 / Spring 2024 / Summer 2024 / Fall 2024
    Covers pulse-width modulated (PWM) converters connected to the single-phase ac power grid. Harmonic standards and the need for power factor correction are discussed. Modeling and control techniques for PWM rectifiers include design of input current control and output voltage control. Modeling and control of single-phase inverters are introduced in the context of a solar photovoltaic power system.
  • ... more

Background

awards and honors

International Activities

Other Profiles