Professor Musgrave's research is focused on the use of computational quantum mechanics and machine learning to investigate engineering processes at a fundamental level and discover new materials and chemical mechanisms. His work comprises a range of technologies including: catalysis to split water, catalytic reduction of CO2 to hydrocarbons, polymerization and photopolymerization, organic catalysts and photocatalysts, photo initiators, advanced battery technology, pseudocapacitors, photovoltaics, solar thermal hydrogen production, and atomic layer deposition. Professor Musgrave is known for pioneering applications of quantum chemical simulations within chemical engineering and is often the first to provide detailed and fundamental descriptions of many important processes including atomic layer deposition, nanotechnology, organic functionalization of semiconductors, CO2 reduction and other catalytic systems.
keywords
computational materials science, computational chemistry, quantum chemistry, photovoltaics, energy storage, batteries, electrochemistry and electrocatalysis, catalysis, photocatalysis, photochemistry, machine learning, photo initiators, photopolymerization, solar fuels, renewable, water splitting, CO2 reduction, ammonia synthesis, fuels, electronic materials, thin film deposition, surface science, chemical kinetics, reaction mechanisms
Reactions of Amino Acids on the Si(100)-2 x 1 Surface.
The Journal of Physical Chemistry C: Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter.
7477-7486.
2011
CHEN 1300 - Introduction to Chemical and Biological Engineering
Primary Instructor
-
Fall 2019
Meets for one lecture per week. Examines the different fields of chemical engineering and chemical & biological engineering including energy, materials, pharma, and biomedical; addresses how to be successful in college and engineering; and showcases some of the opportunities here at CU.
CHEN 3220 - Chemical Engineering Separations
Primary Instructor
-
Spring 2019
Studies separation methods including distillation, absorption, extraction, and membranes, and graphical and computer-based solutions to separation problems. Applies mass transfer rate theory to packed and tray columns.
CHEN 4521 - Physical Chemistry for Engineers
Primary Instructor
-
Spring 2021 / Spring 2022
Examines the laws of classical thermodynamics followed by physical transformations of pure substances, the thermodynamics of simple mixtures and chemical equilibrium. Applies quantum theory to atomic and molecular structure. Presents the concepts and applications of statistical thermodynamics. Introduces rates of chemical reactions, reaction dynamics and catalysis.
CHEN 5390 - Chemical Reactor Engineering
Primary Instructor
-
Fall 2023
Studies ideal and nonideal chemical reactors, including unsteady state behavior, mixing effects, reactor stability, residence time distribution and diffusion effects. Department enforced prerequisite: undergraduate course in chemical reactor design/kinetics.
CHEN 5919 - Special Topics in CHBE
Primary Instructor
-
Spring 2018 / Spring 2019 / Spring 2020 / Spring 2023 / Fall 2023 / Spring 2024 / Fall 2024
May be repeated up to 5 total credit hours.
COEN 1830 - Special Topics
Primary Instructor
-
Fall 2023
Explores topics of interest in engineering. Content varies by instructor and semester. May be repeated up to 9 total credit hours.